# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np def default_trans_func(output, label, seq_mask, vocab): seq_mask = np.expand_dims(seq_mask, axis=2).repeat(output.shape[2], axis=2) output = output * seq_mask idx = np.argmax(output, axis=2) cand, ref_list = [], [] for i in range(idx.shape[0]): token_list = [] for j in range(idx.shape[1]): if seq_mask[i][j][0] == 0: break token_list.append(vocab[idx[i][j]]) ref_list.append([token_list]) label = np.squeeze(label, axis=2) for i in range(label.shape[0]): token_list = [] for j in range(label.shape[1]): if seq_mask[i][j][0] == 0: break token_list.append(vocab[label[i][j]]) cand.append(token_list) return cand, ref_list