# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import sys from collections import defaultdict import paddle from .utils import default_trans_func __all__ = ["BLEU", "BLEUForDuReader"] def get_match_size(cand_ngram, refs_ngram): ref_set = defaultdict(int) for ref_ngram in refs_ngram: tmp_ref_set = defaultdict(int) for ngram in ref_ngram: tmp_ref_set[tuple(ngram)] += 1 for ngram, count in tmp_ref_set.items(): ref_set[tuple(ngram)] = max(ref_set[tuple(ngram)], count) cand_set = defaultdict(int) for ngram in cand_ngram: cand_set[tuple(ngram)] += 1 match_size = 0 for ngram, count in cand_set.items(): match_size += min(count, ref_set.get(tuple(ngram), 0)) cand_size = len(cand_ngram) return match_size, cand_size def get_ngram(sent, n_size, label=None): def _ngram(sent, n_size): ngram_list = [] for left in range(len(sent) - n_size): ngram_list.append(sent[left:left + n_size + 1]) return ngram_list ngram_list = _ngram(sent, n_size) if label is not None: ngram_list = [ngram + '_' + label for ngram in ngram_list] return ngram_list class BLEU(paddle.metric.Metric): r''' BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. This metric uses a modified form of precision to compare a candidate translation against multiple reference translations. BLEU could be used as `paddle.metric.Metric` class, or an ordinary class. When BLEU is used as `paddle.metric.Metric` class. A function is needed that transforms the network output to reference string list, and transforms the label to candidate string. By default, a default function `default_trans_func` is provided, which gets target sequence id by calculating the maximum probability of each step. In this case, user must provide `vocab`. It should be noted that the BLEU here is different from the BLEU calculated in prediction, and it is only for observation during training and evaluation. .. math:: BP & = \begin{cases} 1, & \text{if }c>r \\ e_{1-r/c}, & \text{if }c\leq r \end{cases} BLEU & = BP\exp(\sum_{n=1}^N w_{n} \log{p_{n}}) where `c` is the length of candidate sentence, and 'r' is the length of refrence sentence. Args: trans_func (callable, optional): `trans_func` transforms the network output to string to calculate. vocab (dict|paddlenlp.data.vocab, optional): Vocab for target language. If `trans_func` is None and BLEU is used as `paddle.metric.Metric` instance, `default_trans_func` will be performed and `vocab` must be provided. n_size (int, optional): Number of gram for BLEU metric. Default: 4. weights (list, optional): The weights of precision of each gram. Default: None. name (str, optional): Name of `paddle.metric.Metric` instance. Default: "bleu". Examples: 1. Using as a general evaluation object. .. code-block:: python from paddlenlp.metrics import BLEU bleu = BLEU() cand = ["The","cat","The","cat","on","the","mat"] ref_list = [["The","cat","is","on","the","mat"],["There","is","a","cat","on","the","mat"]] bleu.add_inst(cand, ref_list) print(bleu.score()) # 0.4671379777282001 2. Using as an instance of `paddle.metric.Metric`. .. code-block:: python # TODO(liujiaqi) ''' def __init__(self, trans_func=None, vocab=None, n_size=4, weights=None, name="bleu"): super(BLEU, self).__init__() if not weights: weights = [1 / n_size for _ in range(n_size)] assert len(weights) == n_size, ( "Number of weights and n-gram should be the same, got Number of weights: '%d' and n-gram: '%d'" % (len(weights), n_size)) self._name = name self.match_ngram = {} self.candi_ngram = {} self.weights = weights self.bp_r = 0 self.bp_c = 0 self.n_size = n_size self.vocab = vocab self.trans_func = trans_func def update(self, output, label, seq_mask=None): if self.trans_func is None: if self.vocab is None: raise AttributeError( "The `update` method requires users to provide `trans_func` or `vocab` when initializing BLEU." ) cand_list, ref_list = default_trans_func(output, label, seq_mask, self.vocab) else: cand_list, ref_list = self.trans_func(output, label, seq_mask) if len(cand_list) != len(ref_list): raise ValueError( "Length error! Please check the output of network.") for i in range(len(cand_list)): self.add_inst(cand_list[i], ref_list[i]) def add_inst(self, cand, ref_list): ''' Update the states based on the a pair of candidate and references. Args: cand (list): Tokenized candidate sentence generated by model. ref_list (list): List of ground truth sentences. ''' for n_size in range(self.n_size): self.count_ngram(cand, ref_list, n_size) self.count_bp(cand, ref_list) def count_ngram(self, cand, ref_list, n_size): cand_ngram = get_ngram(cand, n_size) refs_ngram = [] for ref in ref_list: refs_ngram.append(get_ngram(ref, n_size)) if n_size not in self.match_ngram: self.match_ngram[n_size] = 0 self.candi_ngram[n_size] = 0 match_size, cand_size = get_match_size(cand_ngram, refs_ngram) self.match_ngram[n_size] += match_size self.candi_ngram[n_size] += cand_size def count_bp(self, cand, ref_list): self.bp_c += len(cand) self.bp_r += min([(abs(len(cand) - len(ref)), len(ref)) for ref in ref_list])[1] def reset(self): self.match_ngram = {} self.candi_ngram = {} self.bp_r = 0 self.bp_c = 0 def accumulate(self): ''' Calculate the final bleu metric. ''' prob_list = [] for n_size in range(self.n_size): try: if self.candi_ngram[n_size] == 0: _score = 0.0 else: _score = self.match_ngram[n_size] / float(self.candi_ngram[ n_size]) except: _score = 0 if _score == 0: _score = sys.float_info.min prob_list.append(_score) logs = math.fsum(w_i * math.log(p_i) for w_i, p_i in zip(self.weights, prob_list)) bp = math.exp(min(1 - self.bp_r / float(self.bp_c), 0)) bleu = bp * math.exp(logs) return bleu def score(self): return self.accumulate() def name(self): return self._name class BLEUForDuReader(BLEU): ''' BLEU metric with bonus for DuReader contest. Please refer to `DuReader Homepage`_ for more details. ''' def __init__(self, n_size=4, alpha=1.0, beta=1.0): super(BLEUForDuReader, self).__init__(n_size) self.alpha = alpha self.beta = beta def add_inst(self, cand, ref_list, yn_label=None, yn_ref=None, entity_ref=None): BLEU.add_inst(self, cand, ref_list) if yn_label is not None and yn_ref is not None: self.add_yn_bonus(cand, ref_list, yn_label, yn_ref) elif entity_ref is not None: self.add_entity_bonus(cand, entity_ref) def add_yn_bonus(self, cand, ref_list, yn_label, yn_ref): for n_size in range(self.n_size): cand_ngram = get_ngram(cand, n_size, label=yn_label) ref_ngram = [] for ref_id, r in enumerate(yn_ref): ref_ngram.append(get_ngram(ref_list[ref_id], n_size, label=r)) match_size, cand_size = get_match_size(cand_ngram, ref_ngram) self.match_ngram[n_size] += self.alpha * match_size self.candi_ngram[n_size] += self.alpha * match_size def add_entity_bonus(self, cand, entity_ref): for n_size in range(self.n_size): cand_ngram = get_ngram(cand, n_size, label='ENTITY') ref_ngram = [] for reff_id, r in enumerate(entity_ref): ref_ngram.append(get_ngram(r, n_size, label='ENTITY')) match_size, cand_size = get_match_size(cand_ngram, ref_ngram) self.match_ngram[n_size] += self.beta * match_size self.candi_ngram[n_size] += self.beta * match_size