# Simple Baselines for Human Pose Estimation in Fluid ## Introduction This is a simple demonstration of re-implementation in [PaddlePaddle.Fluid](http://www.paddlepaddle.org/en) for the paper [Simple Baselines for Human Pose Estimation and Tracking](https://arxiv.org/abs/1804.06208) (ECCV'18) from MSRA. ![demo](demo.gif) > **Video in Demo**: *Bruno Mars - That’s What I Like [Official Video]*. ## Requirements - Python == 2.7 or 3.6 - PaddlePaddle >= 1.1.0 - opencv-python >= 3.3 ### Notes: We found that there are some issues may result in misconvergence with PaddlePaddle 1.3.0 and cuDNN-7.0. So it is recommended to use the latest version of PaddlePaddle (>= 1.4). ## Environment The code is developed and tested under 4 Tesla K40/P40 GPUS cards on CentOS with installed CUDA-9.0/8.0 and cuDNN-7.0. ## Results on MPII Val | Arch | Head | Shoulder | Elbow | Wrist | Hip | Knee | Ankle | Mean | Mean@0.1| Models | | ---- |:----:|:--------:|:-----:|:-----:|:---:|:----:|:-----:|:----:|:-------:|:------:| | 256x256\_pose\_resnet\_50 in PyTorch | 96.351 | 95.329 | 88.989 | 83.176 | 88.420 | 83.960 | 79.594 | 88.532 | 33.911 | - | | 256x256\_pose\_resnet\_50 in Fluid | 96.385 | 95.363 | 89.211 | 84.084 | 88.454 | 84.182 | 79.546 | 88.748 | 33.750 | [`link`](https://paddlemodels.bj.bcebos.com/pose/pose-resnet50-mpii-256x256.tar.gz) | | 384x384\_pose\_resnet\_50 in PyTorch | 96.658 | 95.754 | 89.790 | 84.614 | 88.523 | 84.666 | 79.287 | 89.066 | 38.046 | - | | 384x384\_pose\_resnet\_50 in Fluid | 96.862 | 95.635 | 90.046 | 85.557 | 88.818 | 84.948 | 78.484 | 89.235 | 38.093 | [`link`](https://paddlemodels.bj.bcebos.com/pose/pose-resnet50-mpii-384x384.tar.gz) | ## Results on COCO val2017 with detector having human AP of 56.4 on COCO val2017 dataset | Arch | AP | Ap .5 | AP .75 | AP (M) | AP (L) | AR | AR .5 | AR .75 | AR (M) | AR (L) | Models | | ---- |:--:|:-----:|:------:|:------:|:------:|:--:|:-----:|:------:|:------:|:------:|:------:| | 256x192\_pose\_resnet\_50 in PyTorch | 0.704 | 0.886 | 0.783 | 0.671 | 0.772 | 0.763 | 0.929 | 0.834 | 0.721 | 0.824 | - | | 256x192\_pose\_resnet\_50 in Fluid | 0.712 | 0.897 | 0.786 | 0.683 | 0.756 | 0.741 | 0.906 | 0.806 | 0.709 | 0.790 | [`link`](https://paddlemodels.bj.bcebos.com/pose/pose-resnet50-coco-256x192.tar.gz) | | 384x288\_pose\_resnet\_50 in PyTorch | 0.722 | 0.893 | 0.789 | 0.681 | 0.797 | 0.776 | 0.932 | 0.838 | 0.728 | 0.846 | - | | 384x288\_pose\_resnet\_50 in Fluid | 0.727 | 0.897 | 0.796 | 0.690 | 0.783 | 0.754 | 0.907 | 0.813 | 0.714 | 0.814 | [`link`](https://paddlemodels.bj.bcebos.com/pose/pose-resnet50-coco-384x288.tar.gz) | ### Notes: - Flip test is used. - We do not hardly search the best model, just use the last saved model to make validation. ## Getting Start ### Prepare Datasets and Pretrained Models - Following the [instruction](https://github.com/Microsoft/human-pose-estimation.pytorch#data-preparation) to prepare datasets. - Download the pretrained ResNet-50 model in PaddlePaddle.Fluid on ImageNet from [Model Zoo](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleCV/image_classification#supported-models-and-performances). ```bash wget http://paddle-imagenet-models.bj.bcebos.com/resnet_50_model.tar ``` Then, put them in the folder `pretrained` under the directory root of this repo, make them look like: ``` ${THIS REPO ROOT} `-- pretrained `-- resnet_50 |-- 115 `-- data `-- coco |-- annotations |-- images `-- mpii |-- annot |-- images ``` ### Install [COCOAPI](https://github.com/cocodataset/cocoapi) ```bash # COCOAPI=/path/to/clone/cocoapi git clone https://github.com/cocodataset/cocoapi.git $COCOAPI cd $COCOAPI/PythonAPI # if cython is not installed pip install Cython # Install into global site-packages make install # Alternatively, if you do not have permissions or prefer # not to install the COCO API into global site-packages python2 setup.py install --user ``` ### Perform Validating Downloading the checkpoints of Pose-ResNet-50 trained on MPII dataset from [here](https://paddlemodels.bj.bcebos.com/pose/pose-resnet50-mpii-384x384.tar.gz). Extract it into the folder `checkpoints` under the directory root of this repo. Then run ```bash python val.py --dataset 'mpii' --checkpoint 'checkpoints/pose-resnet50-mpii-384x384' --data_root 'data/mpii' ``` ### Perform Training ```bash python train.py --dataset 'mpii' ``` **Note**: Configurations for training are aggregated in the `lib/mpii_reader.py` and `lib/coco_reader.py`. ### Perform Test on Images We also support to apply pre-trained models on customized images. Put the images into the folder `test` under the directory root of this repo. Then run ```bash python test.py --checkpoint 'checkpoints/pose-resnet-50-384x384-mpii' ``` If there are multiple persons in images, detectors such as [Faster R-CNN](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleCV/rcnn), [SSD](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleCV/object_detection) or others should be used first to crop them out. Because the simple baseline for human pose estimation is a top-down method. ## Reference - Simple Baselines for Human Pose Estimation and Tracking in PyTorch [`code`](https://github.com/Microsoft/human-pose-estimation.pytorch#data-preparation) ## License This code is released under the Apache License 2.0.