# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Many thanks for following projects. # https://github.com/TsinghuaAI/CPM-Generate # https://github.com/jm12138/CPM-Generate-Paddle import argparse import numpy as np import paddle from paddlenlp.utils.tools import loadz from paddlenlp.transformers import GPT2Model, GPT2ForPretraining from paddlenlp.transformers import GPT2ChineseTokenizer, GPT2Tokenizer from paddlenlp.utils.log import logger MODEL_CLASSES = { "gpt2-base-cn": (GPT2ForPretraining, GPT2ChineseTokenizer), "gpt2-medium-en": (GPT2ForPretraining, GPT2Tokenizer), } class Demo: def __init__(self, model_name_or_path="gpt2-base-cn"): model_class, tokenizer_class = MODEL_CLASSES[model_name_or_path] self.tokenizer = tokenizer_class.from_pretrained(model_name_or_path) logger.info('Loading the model parameters, please wait...') self.model = model_class.from_pretrained(model_name_or_path) self.model.eval() logger.info('Model loaded.') # prediction function def predict(self, text, max_len=10): ids = self.tokenizer.encode(text) input_id = paddle.to_tensor( np.array(ids).reshape(1, -1).astype('int64')) output, cached_kvs = self.model(input_id, use_cache=True, cache=None) nid = int(np.argmax(output[0, -1].numpy())) ids.append(nid) out = [nid] for i in range(max_len): input_id = paddle.to_tensor( np.array([nid]).reshape(1, -1).astype('int64')) output, cached_kvs = self.model( input_id, use_cache=True, cache=cached_kvs) nid = int(np.argmax(output[0, -1].numpy())) ids.append(nid) # if nid is '\n', the predicion is over. if nid == 3: break out.append(nid) logger.info(text) logger.info(self.tokenizer.decode(out)) # One shot example def ask_question(self, question, max_len=10): self.predict("问题:中国的首都是哪里?答案:北京。\n问题:%s 答案:" % question, max_len) # dictation poetry def dictation_poetry(self, front, max_len=10): self.predict('''默写古诗: 大漠孤烟直,长河落日圆。\n%s''' % front, max_len) if __name__ == "__main__": demo = Demo("gpt2-base-cn") demo.ask_question("百度的厂长是谁?") demo.dictation_poetry("举杯邀明月,") del demo # demo = Demo("gpt2-medium-en") # demo.predict("Question: Where is the capital of China? Answer: Beijing. \nQuestion: Who is the CEO of Apple? Answer:", 20)