import os import gzip import argparse import itertools import paddle.v2 as paddle from network_conf import DeepFM import reader def parse_args(): parser = argparse.ArgumentParser(description="PaddlePaddle DeepFM example") parser.add_argument( '--model_gz_path', type=str, required=True, help="path of model parameters gz file") parser.add_argument( '--data_path', type=str, required=True, help="path of the dataset to infer") parser.add_argument( '--prediction_output_path', type=str, required=True, help="path to output the prediction") parser.add_argument( '--factor_size', type=int, default=10, help="the factor size for the factorization machine (default:10)") return parser.parse_args() def infer(): args = parse_args() paddle.init(use_gpu=False, trainer_count=1) model = DeepFM(args.factor_size, infer=True) parameters = paddle.parameters.Parameters.from_tar( gzip.open(args.model_gz_path, 'r')) inferer = paddle.inference.Inference( output_layer=model, parameters=parameters) dataset = reader.Dataset() infer_reader = paddle.batch(dataset.infer(args.data_path), batch_size=1000) with open(args.prediction_output_path, 'w') as out: for id, batch in enumerate(infer_reader()): res = inferer.infer(input=batch) predictions = [x for x in itertools.chain.from_iterable(res)] out.write('\n'.join(map(str, predictions)) + '\n') if __name__ == '__main__': infer()