{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 1.ERNIE-Layout Introduction\n",
"\n",
"Recent years have witnessed the rise and success of pre-training techniques in visually-rich document understanding. However, most existing methods lack the systematic mining and utilization of layout-centered knowledge, leading to sub-optimal performances. In this paper, we propose ERNIE-Layout, a novel document pre-training solution with layout knowledge enhancement in the whole workflow, to learn better representations that combine the features from text, layout, and image. Specifically, we first rearrange input sequences in the serialization stage, and then present a correlative pre-training task, reading order prediction, to learn the proper reading order of documents. To improve the layout awareness of the model, we integrate a spatial-aware disentangled attention into the multi-modal transformer and a replaced regions prediction task into the pre-training phase. Experimental results show that ERNIE-Layout achieves superior performance on various downstream tasks, setting new state-of-the-art on key information extraction, document image classification, and document question answering datasets.\n",
"\n",
"The work is accepted by EMNLP 2022 (Findings). To expand the scope of commercial applications for document intelligence, we release the multilingual model of ERNIE-Layout in PaddleNLP. You can visit [https://github.com/PaddlePaddle/PaddleNLP/tree/develop/model_zoo/ernie-layout](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/model_zoo/ernie-layout) for more details.
\n",
"\n",
"
"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 2.Model Performance\n",
"\n",
"ERNIE-Layout can be used to process and analyze multimodal documents. ERNIE-Layout is effective in tasks such as document classification, information extraction, document VQA with layout data (documents, pictures, etc). \n",
"\n",
"- Invoice VQA\n",
"\n",
"