# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ neural network for word2vec """ from __future__ import print_function import math import numpy as np import paddle.fluid as fluid def skip_gram_word2vec(dict_size, word_frequencys, embedding_size): def nce_layer(input, label, embedding_size, num_total_classes, num_neg_samples, sampler, custom_dist, sample_weight): # convert word_frequencys to tensor nid_freq_arr = np.array(word_frequencys).astype('float32') nid_freq_var = fluid.layers.assign(input=nid_freq_arr) w_param_name = "nce_w" b_param_name = "nce_b" w_param = fluid.default_main_program().global_block().create_parameter( shape=[num_total_classes, embedding_size], dtype='float32', name=w_param_name) b_param = fluid.default_main_program().global_block().create_parameter( shape=[num_total_classes, 1], dtype='float32', name=b_param_name) cost = fluid.layers.nce( input=input, label=label, num_total_classes=num_total_classes, sampler=sampler, custom_dist=nid_freq_var, sample_weight = sample_weight, param_attr=fluid.ParamAttr(name=w_param_name), bias_attr=fluid.ParamAttr(name=b_param_name), num_neg_samples=num_neg_samples) return cost input_word = fluid.layers.data(name="input_word", shape=[1], dtype='int64') predict_word = fluid.layers.data(name='predict_word', shape=[1], dtype='int64') data_list = [input_word, predict_word] emb = fluid.layers.embedding( input=input_word, size=[dict_size, embedding_size], param_attr=fluid.ParamAttr(initializer=fluid.initializer.Normal(scale=1 / math.sqrt(dict_size)))) cost = nce_layer(emb, predict_word, embedding_size, dict_size, 5, "uniform", word_frequencys, None) avg_cost = fluid.layers.reduce_mean(cost) return avg_cost, data_list