import paddle.v2 as paddle dense_feature_dim = 13 sparse_feature_dim = 117568 def fm_layer(input, factor_size, fm_param_attr): first_order = paddle.layer.fc( input=input, size=1, act=paddle.activation.Linear()) second_order = paddle.layer.factorization_machine( input=input, factor_size=factor_size, act=paddle.activation.Linear(), param_attr=fm_param_attr) out = paddle.layer.addto( input=[first_order, second_order], act=paddle.activation.Linear(), bias_attr=False) return out def DeepFM(factor_size, infer=False): dense_input = paddle.layer.data( name="dense_input", type=paddle.data_type.dense_vector(dense_feature_dim)) sparse_input = paddle.layer.data( name="sparse_input", type=paddle.data_type.sparse_binary_vector(sparse_feature_dim)) sparse_input_ids = [ paddle.layer.data( name="C" + str(i), type=paddle.data_type.integer_value(sparse_feature_dim)) for i in range(1, 27) ] dense_fm = fm_layer( dense_input, factor_size, fm_param_attr=paddle.attr.Param(name="DenseFeatFactors")) sparse_fm = fm_layer( sparse_input, factor_size, fm_param_attr=paddle.attr.Param(name="SparseFeatFactors")) def embedding_layer(input): return paddle.layer.embedding( input=input, size=factor_size, param_attr=paddle.attr.Param(name="SparseFeatFactors")) sparse_embed_seq = map(embedding_layer, sparse_input_ids) sparse_embed = paddle.layer.concat(sparse_embed_seq) fc1 = paddle.layer.fc( input=[sparse_embed, dense_input], size=400, act=paddle.activation.Relu()) fc2 = paddle.layer.fc(input=fc1, size=400, act=paddle.activation.Relu()) fc3 = paddle.layer.fc(input=fc2, size=400, act=paddle.activation.Relu()) predict = paddle.layer.fc( input=[dense_fm, sparse_fm, fc3], size=1, act=paddle.activation.Sigmoid()) if not infer: label = paddle.layer.data( name="label", type=paddle.data_type.dense_vector(1)) cost = paddle.layer.multi_binary_label_cross_entropy_cost( input=predict, label=label) paddle.evaluator.classification_error( name="classification_error", input=predict, label=label) paddle.evaluator.auc(name="auc", input=predict, label=label) return cost else: return predict