# -*- coding: utf-8 -*- # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import distutils.util def parse_args(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( "--train_data_prefix", type=str, help="file prefix for train data") parser.add_argument( "--eval_data_prefix", type=str, help="file prefix for eval data") parser.add_argument( "--test_data_prefix", type=str, help="file prefix for test data") parser.add_argument( "--vocab_prefix", type=str, help="file prefix for vocab") parser.add_argument("--src_lang", type=str, help="source language suffix") parser.add_argument("--tar_lang", type=str, help="target language suffix") parser.add_argument( "--attention", type=eval, default=False, help="Whether use attention model") parser.add_argument( "--optimizer", type=str, default='adam', help="optimizer to use, only supprt[sgd|adam]") parser.add_argument( "--learning_rate", type=float, default=0.001, help="learning rate for optimizer") parser.add_argument( "--num_layers", type=int, default=1, help="layers number of encoder and decoder") parser.add_argument( "--hidden_size", type=int, default=100, help="hidden size of encoder and decoder") parser.add_argument("--src_vocab_size", type=int, help="source vocab size") parser.add_argument("--tar_vocab_size", type=int, help="target vocab size") parser.add_argument( "--batch_size", type=int, help="batch size of each step") parser.add_argument( "--max_epoch", type=int, default=12, help="max epoch for the training") parser.add_argument( "--max_len", type=int, default=50, help="max length for source and target sentence") parser.add_argument( "--dropout", type=float, default=0.0, help="drop probability") parser.add_argument( "--init_scale", type=float, default=0.0, help="init scale for parameter") parser.add_argument( "--max_grad_norm", type=float, default=5.0, help="max grad norm for global norm clip") parser.add_argument( "--model_path", type=str, default='model', help="model path for model to save") parser.add_argument( "--reload_model", type=str, help="reload model to inference") parser.add_argument( "--infer_file", type=str, help="file name for inference") parser.add_argument( "--infer_output_file", type=str, default='infer_output', help="file name for inference output") parser.add_argument( "--beam_size", type=int, default=10, help="file name for inference") parser.add_argument( '--use_gpu', type=eval, default=False, help='Whether using gpu [True|False]') parser.add_argument( "--enable_ce", action='store_true', help="The flag indicating whether to run the task " "for continuous evaluation.") parser.add_argument( "--profile", action='store_true', help="Whether enable the profile.") args = parser.parse_args() return args