import os import time import numpy as np import argparse import functools import shutil import math import paddle import paddle.fluid as fluid import reader from mobilenet_ssd import mobile_net from utility import add_arguments, print_arguments parser = argparse.ArgumentParser(description=__doc__) add_arg = functools.partial(add_arguments, argparser=parser) # yapf: disable add_arg('learning_rate', float, 0.001, "Learning rate.") add_arg('batch_size', int, 64, "Minibatch size.") add_arg('epoc_num', int, 120, "Epoch number.") add_arg('use_gpu', bool, True, "Whether use GPU.") add_arg('parallel', bool, True, "Parallel.") add_arg('dataset', str, 'pascalvoc', "coco2014, coco2017, and pascalvoc.") add_arg('model_save_dir', str, 'model', "The path to save model.") add_arg('pretrained_model', str, 'pretrained/ssd_mobilenet_v1_coco/', "The init model path.") add_arg('ap_version', str, '11point', "Integral, 11point.") add_arg('image_shape', str, '3,300,300', "Input image shape.") add_arg('mean_BGR', str, '127.5,127.5,127.5', "Mean value for B,G,R channel which will be subtracted.") add_arg('data_dir', str, 'data/pascalvoc', "data directory") add_arg('enable_ce', bool, False, "Whether use CE to evaluate the model") #yapf: enable train_parameters = { "pascalvoc": { "train_images": 16551, "image_shape": [3, 300, 300], "class_num": 21, "batch_size": 64, "lr": 0.001, "lr_epochs": [40, 60, 80, 100], "lr_decay": [1, 0.5, 0.25, 0.1, 0.01], "ap_version": '11point', }, "coco2014": { "train_images": 82783, "image_shape": [3, 300, 300], "class_num": 91, "batch_size": 64, "lr": 0.001, "lr_epochs": [12, 19], "lr_decay": [1, 0.5, 0.25], "ap_version": 'integral', # should use eval_coco_map.py to test model }, "coco2017": { "train_images": 118287, "image_shape": [3, 300, 300], "class_num": 91, "batch_size": 64, "lr": 0.001, "lr_epochs": [12, 19], "lr_decay": [1, 0.5, 0.25], "ap_version": 'integral', # should use eval_coco_map.py to test model } } def optimizer_setting(train_params): batch_size = train_params["batch_size"] iters = train_params["train_images"] // batch_size lr = train_params["lr"] boundaries = [i * iters for i in train_params["lr_epochs"]] values = [ i * lr for i in train_params["lr_decay"]] optimizer = fluid.optimizer.RMSProp( learning_rate=fluid.layers.piecewise_decay(boundaries, values), regularization=fluid.regularizer.L2Decay(0.00005), ) return optimizer def build_program(main_prog, startup_prog, train_params, is_train): image_shape = train_params['image_shape'] class_num = train_params['class_num'] ap_version = train_params['ap_version'] with fluid.program_guard(main_prog, startup_prog): py_reader = fluid.layers.py_reader( capacity=64, shapes=[[-1] + image_shape, [-1, 4], [-1, 1], [-1, 1]], lod_levels=[0, 1, 1, 1], dtypes=["float32", "float32", "int32", "int32"], use_double_buffer=True) with fluid.unique_name.guard(): image, gt_box, gt_label, difficult = fluid.layers.read_file(py_reader) locs, confs, box, box_var = mobile_net(class_num, image, image_shape) if is_train: loss = fluid.layers.ssd_loss(locs, confs, gt_box, gt_label, box, box_var) loss = fluid.layers.reduce_sum(loss) optimizer = optimizer_setting(train_params) optimizer.minimize(loss) else: nmsed_out = fluid.layers.detection_output( locs, confs, box, box_var, nms_threshold=0.45) loss = fluid.evaluator.DetectionMAP( nmsed_out, gt_label, gt_box, difficult, class_num, overlap_threshold=0.5, evaluate_difficult=False, ap_version=ap_version) return py_reader, loss def train(args, data_args, train_params, train_file_list, val_file_list): model_save_dir = args.model_save_dir pretrained_model = args.pretrained_model use_gpu = args.use_gpu parallel = args.parallel enable_ce = args.enable_ce is_shuffle = True devices = os.getenv("CUDA_VISIBLE_DEVICES") or "" devices_num = len(devices.split(",")) batch_size = train_params['batch_size'] epoc_num = train_params['epoc_num'] batch_size_per_device = batch_size // devices_num iters_per_epoc = train_params["train_images"] // batch_size num_workers = 8 startup_prog = fluid.Program() train_prog = fluid.Program() test_prog = fluid.Program() if enable_ce: import random random.seed(0) np.random.seed(0) is_shuffle = False startup_prog.random_seed = 111 train_prog.random_seed = 111 test_prog.random_seed = 111 train_py_reader, loss = build_program( main_prog=train_prog, startup_prog=startup_prog, train_params=train_params, is_train=True) test_py_reader, map_eval = build_program( main_prog=test_prog, startup_prog=startup_prog, train_params=train_params, is_train=False) test_prog = test_prog.clone(for_test=True) place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) exe.run(startup_prog) if pretrained_model: def if_exist(var): return os.path.exists(os.path.join(pretrained_model, var.name)) fluid.io.load_vars(exe, pretrained_model, main_program=train_prog, predicate=if_exist) if parallel: train_exe = fluid.ParallelExecutor(main_program=train_prog, use_cuda=use_gpu, loss_name=loss.name) train_reader = reader.train(data_args, train_file_list, batch_size_per_device, shuffle=is_shuffle, use_multiprocessing=True, num_workers=num_workers, max_queue=24, enable_ce=enable_ce) test_reader = reader.test(data_args, val_file_list, batch_size) train_py_reader.decorate_paddle_reader(train_reader) test_py_reader.decorate_paddle_reader(test_reader) def save_model(postfix, main_prog): model_path = os.path.join(model_save_dir, postfix) if os.path.isdir(model_path): shutil.rmtree(model_path) print('save models to %s' % (model_path)) fluid.io.save_persistables(exe, model_path, main_program=main_prog) best_map = 0. def test(epoc_id, best_map): _, accum_map = map_eval.get_map_var() map_eval.reset(exe) every_epoc_map=[] test_py_reader.start() try: batch_id = 0 while True: test_map, = exe.run(test_prog, fetch_list=[accum_map]) if batch_id % 10 == 0: every_epoc_map.append(test_map) print("Batch {0}, map {1}".format(batch_id, test_map)) batch_id += 1 except fluid.core.EOFException: test_py_reader.reset() mean_map = np.mean(every_epoc_map) print("Epoc {0}, test map {1}".format(epoc_id, test_map)) if test_map[0] > best_map: best_map = test_map[0] save_model('best_model', test_prog) return best_map, mean_map train_py_reader.start() total_time = 0.0 try: for epoc_id in range(epoc_num): epoch_idx = epoc_id + 1 start_time = time.time() prev_start_time = start_time every_epoc_loss = [] for batch_id in range(iters_per_epoc): prev_start_time = start_time start_time = time.time() if parallel: loss_v, = train_exe.run(fetch_list=[loss.name]) else: loss_v, = exe.run(train_prog, fetch_list=[loss]) loss_v = np.mean(np.array(loss_v)) every_epoc_loss.append(loss_v) if batch_id % 20 == 0: print("Epoc {:d}, batch {:d}, loss {:.6f}, time {:.5f}".format( epoc_id, batch_id, loss_v, start_time - prev_start_time)) end_time = time.time() total_time += end_time - start_time best_map, mean_map = test(epoc_id, best_map) print("Best test map {0}".format(best_map)) if epoc_id % 10 == 0 or epoc_id == epoc_num - 1: save_model(str(epoc_id), train_prog) if enable_ce and epoc_id == epoc_num - 1: train_avg_loss = np.mean(every_epoc_loss) if devices_num == 1: print("kpis train_cost %s" % train_avg_loss) print("kpis test_acc %s" % mean_map) print("kpis train_speed %s" % (total_time / epoch_idx)) else: print("kpis train_cost_card%s %s" % (devices_num, train_avg_loss)) print("kpis test_acc_card%s %s" % (devices_num, mean_map)) print("kpis train_speed_card%s %f" % (devices_num, total_time / epoch_idx)) except fluid.core.EOFException: train_py_reader.reset() except StopIteration: train_py_reader.reset() train_py_reader.reset() if __name__ == '__main__': args = parser.parse_args() print_arguments(args) data_dir = args.data_dir dataset = args.dataset assert dataset in ['pascalvoc', 'coco2014', 'coco2017'] # for pascalvoc label_file = 'label_list' train_file_list = 'trainval.txt' val_file_list = 'test.txt' if dataset == 'coco2014': train_file_list = 'annotations/instances_train2014.json' val_file_list = 'annotations/instances_val2014.json' elif dataset == 'coco2017': train_file_list = 'annotations/instances_train2017.json' val_file_list = 'annotations/instances_val2017.json' mean_BGR = [float(m) for m in args.mean_BGR.split(",")] image_shape = [int(m) for m in args.image_shape.split(",")] train_parameters[dataset]['image_shape'] = image_shape train_parameters[dataset]['batch_size'] = args.batch_size train_parameters[dataset]['lr'] = args.learning_rate train_parameters[dataset]['epoc_num'] = args.epoc_num data_args = reader.Settings( dataset=args.dataset, data_dir=data_dir, label_file=label_file, resize_h=image_shape[1], resize_w=image_shape[2], mean_value=mean_BGR, apply_distort=True, apply_expand=True, ap_version = args.ap_version) train(args, data_args, train_parameters[dataset], train_file_list=train_file_list, val_file_list=val_file_list)