#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import functools import os from PIL import Image import paddle.fluid as fluid import paddle import numpy as np import imageio import glob from util.config import add_arguments, print_arguments from data_reader import celeba_reader_creator from util.utility import check_attribute_conflict, check_gpu import copy parser = argparse.ArgumentParser(description=__doc__) add_arg = functools.partial(add_arguments, argparser=parser) # yapf: disable add_arg('model_net', str, 'cgan', "The model used") add_arg('net_G', str, "resnet_9block", "Choose the CycleGAN and Pix2pix generator's network, choose in [resnet_9block|resnet_6block|unet_128|unet_256]") add_arg('init_model', str, None, "The init model file of directory.") add_arg('output', str, "./infer_result", "The directory the infer result to be saved to.") add_arg('input_style', str, "A", "The style of the input, A or B") add_arg('norm_type', str, "batch_norm", "Which normalization to used") add_arg('use_gpu', bool, True, "Whether to use GPU to train.") add_arg('dropout', bool, False, "Whether to use dropout") add_arg('g_base_dims', int, 64, "Base channels in CycleGAN generator") add_arg('c_dim', int, 13, "the size of attrs") add_arg('use_gru', bool, False, "Whether to use GRU") add_arg('crop_size', int, 178, "crop size") add_arg('image_size', int, 128, "image size") add_arg('selected_attrs', str, "Bald,Bangs,Black_Hair,Blond_Hair,Brown_Hair,Bushy_Eyebrows,Eyeglasses,Male,Mouth_Slightly_Open,Mustache,No_Beard,Pale_Skin,Young", "the attributes we selected to change") add_arg('batch_size', int, 16, "batch size when test") add_arg('test_list', str, "./data/celeba/test_list_attr_celeba.txt", "the test list file") add_arg('dataset_dir', str, "./data/celeba/", "the dataset directory to be infered") add_arg('n_layers', int, 5, "default layers in generotor") add_arg('gru_n_layers', int, 4, "default layers of GRU in generotor") # yapf: enable def infer(args): data_shape = [-1, 3, args.image_size, args.image_size] input = fluid.layers.data(name='input', shape=data_shape, dtype='float32') label_org_ = fluid.layers.data( name='label_org_', shape=[args.c_dim], dtype='float32') label_trg_ = fluid.layers.data( name='label_trg_', shape=[args.c_dim], dtype='float32') model_name = 'net_G' if args.model_net == 'CycleGAN': from network.CycleGAN_network import CycleGAN_model model = CycleGAN_model() if args.input_style == "A": fake = model.network_G(input, name="GA", cfg=args) elif args.input_style == "B": fake = model.network_G(input, name="GB", cfg=args) else: raise "Input with style [%s] is not supported." % args.input_style elif args.model_net == 'Pix2pix': from network.Pix2pix_network import Pix2pix_model model = Pix2pix_model() fake = model.network_G(input, "generator", cfg=args) elif args.model_net == 'StarGAN': from network.StarGAN_network import StarGAN_model model = StarGAN_model() fake = model.network_G(input, label_trg_, name="g_main", cfg=args) elif args.model_net == 'STGAN': from network.STGAN_network import STGAN_model model = STGAN_model() fake, _ = model.network_G( input, label_org_, label_trg_, cfg=args, name='generator', is_test=True) elif args.model_net == 'AttGAN': from network.AttGAN_network import AttGAN_model model = AttGAN_model() fake, _ = model.network_G( input, label_org_, label_trg_, cfg=args, name='generator', is_test=True) else: raise NotImplementedError("model_net {} is not support".format( args.model_net)) # prepare environment place = fluid.CPUPlace() if args.use_gpu: place = fluid.CUDAPlace(0) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) for var in fluid.default_main_program().global_block().all_parameters(): print(var.name) print(args.init_model + '/' + model_name) fluid.io.load_persistables(exe, args.init_model + "/" + model_name) print('load params done') if not os.path.exists(args.output): os.makedirs(args.output) attr_names = args.selected_attrs.split(',') if args.model_net == 'AttGAN' or args.model_net == 'STGAN': test_reader = celeba_reader_creator( image_dir=args.dataset_dir, list_filename=args.test_list, batch_size=args.batch_size, drop_last=False, args=args) reader_test = test_reader.get_test_reader( args, shuffle=False, return_name=True) for data in zip(reader_test()): real_img, label_org, name = data[0] print("read {}".format(name)) label_trg = copy.deepcopy(label_org) tensor_img = fluid.LoDTensor() tensor_label_org = fluid.LoDTensor() tensor_label_trg = fluid.LoDTensor() tensor_label_org_ = fluid.LoDTensor() tensor_label_trg_ = fluid.LoDTensor() tensor_img.set(real_img, place) tensor_label_org.set(label_org, place) real_img_temp = np.squeeze(real_img).transpose([0, 2, 3, 1]) images = [real_img_temp] for i in range(args.c_dim): label_trg_tmp = copy.deepcopy(label_trg) for j in range(len(label_org)): label_trg_tmp[j][i] = 1.0 - label_trg_tmp[j][i] label_trg_tmp = check_attribute_conflict( label_trg_tmp, attr_names[i], attr_names) label_trg_ = list( map(lambda x: ((x * 2) - 1) * 0.5, label_trg_tmp)) for j in range(len(label_org)): label_trg_[j][i] = label_trg_[j][i] * 2.0 tensor_label_org_.set(label_org, place) tensor_label_trg.set(label_trg, place) tensor_label_trg_.set(label_trg_, place) out = exe.run(feed={ "input": tensor_img, "label_org_": tensor_label_org_, "label_trg_": tensor_label_trg_ }, fetch_list=[fake.name]) fake_temp = np.squeeze(out[0]).transpose([0, 2, 3, 1]) images.append(fake_temp) images_concat = np.concatenate(images, 1) images_concat = np.concatenate(images_concat, 1) imageio.imwrite(args.output + "/fake_img_" + name[0], ( (images_concat + 1) * 127.5).astype(np.uint8)) elif args.model_net == 'StarGAN': test_reader = celeba_reader_creator( image_dir=args.dataset_dir, list_filename=args.test_list, batch_size=args.batch_size, drop_last=False, args=args) reader_test = test_reader.get_test_reader( args, shuffle=False, return_name=True) for data in zip(reader_test()): real_img, label_org, name = data[0] print("read {}".format(name)) tensor_img = fluid.LoDTensor() tensor_label_org = fluid.LoDTensor() tensor_img.set(real_img, place) tensor_label_org.set(label_org, place) real_img_temp = np.squeeze(real_img).transpose([0, 2, 3, 1]) images = [real_img_temp] for i in range(args.c_dim): label_trg_tmp = copy.deepcopy(label_org) for j in range(len(label_org)): label_trg_tmp[j][i] = 1.0 - label_trg_tmp[j][i] label_trg = check_attribute_conflict( label_trg_tmp, attr_names[i], attr_names) tensor_label_trg = fluid.LoDTensor() tensor_label_trg.set(label_trg, place) out = exe.run( feed={"input": tensor_img, "label_trg_": tensor_label_trg}, fetch_list=[fake.name]) fake_temp = np.squeeze(out[0]).transpose([0, 2, 3, 1]) images.append(fake_temp) images_concat = np.concatenate(images, 1) images_concat = np.concatenate(images_concat, 1) imageio.imwrite(args.output + "/fake_img_" + name[0], ( (images_concat + 1) * 127.5).astype(np.uint8)) elif args.model_net == 'Pix2pix' or args.model_net == 'CycleGAN': for file in glob.glob(args.dataset_dir): print("read {}".format(file)) image_name = os.path.basename(file) image = Image.open(file).convert('RGB') image = image.resize((256, 256), Image.BICUBIC) image = np.array(image).transpose([2, 0, 1]).astype('float32') image = image / 255.0 image = (image - 0.5) / 0.5 data = image[np.newaxis, :] tensor = fluid.LoDTensor() tensor.set(data, place) fake_temp = exe.run(fetch_list=[fake.name], feed={"input": tensor}) fake_temp = np.squeeze(fake_temp[0]).transpose([1, 2, 0]) input_temp = np.squeeze(data).transpose([1, 2, 0]) imageio.imwrite(args.output + "/fake_" + image_name, ( (fake_temp + 1) * 127.5).astype(np.uint8)) else: raise NotImplementedError("model_net {} is not support".format( args.model_net)) if __name__ == "__main__": args = parser.parse_args() print_arguments(args) check_gpu(args.use_gpu) infer(args)