# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import time import numpy as np import paddle import paddle.fluid as fluid import reader import models from utility import print_arguments, parse_args import json from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval, Params from config.config import cfg def eval(): if '2014' in cfg.dataset: test_list = 'annotations/instances_val2014.json' elif '2017' in cfg.dataset: test_list = 'annotations/instances_val2017.json' if cfg.debug: if not os.path.exists('output'): os.mkdir('output') model = models.YOLOv3(cfg.model_cfg_path, is_train=False) model.build_model() outputs = model.get_pred() hyperparams = model.get_hyperparams() yolo_anchors = model.get_yolo_anchors() yolo_classes = model.get_yolo_classes() place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) # yapf: disable if cfg.pretrained_model: def if_exist(var): return os.path.exists(os.path.join(cfg.pretrained_model, var.name)) fluid.io.load_vars(exe, cfg.pretrained_model, predicate=if_exist) # yapf: enable input_size = model.get_input_size() test_reader = reader.test(input_size, 1) label_names, label_ids = reader.get_label_infos() if cfg.debug: print("Load in labels {} with ids {}".format(label_names, label_ids)) feeder = fluid.DataFeeder(place=place, feed_list=model.feeds()) def get_pred_result(boxes, scores, labels, im_id): result = [] for box, score, label in zip(boxes, scores, labels): if score < 0.05: continue x1, y1, x2, y2 = box w = x2 - x1 + 1 h = y2 - y1 + 1 bbox = [x1, y1, w, h] res = { 'image_id': im_id, 'category_id': label_ids[int(label)], 'bbox': map(float, bbox), 'score': float(score) } result.append(res) return result dts_res = [] fetch_list = [outputs] total_time = 0 for batch_id, batch_data in enumerate(test_reader()): start_time = time.time() batch_outputs = exe.run( fetch_list=[v.name for v in fetch_list], feed=feeder.feed(batch_data), return_numpy=False, use_program_cache=True) lod = batch_outputs[0].lod()[0] nmsed_boxes = np.array(batch_outputs[0]) if nmsed_boxes.shape[1] != 6: continue for i in range(len(lod) - 1): im_id = batch_data[i][1] start = lod[i] end = lod[i + 1] if start == end: continue nmsed_box = nmsed_boxes[start:end, :] labels = nmsed_box[:, 0] scores = nmsed_box[:, 1] boxes = nmsed_box[:, 2:6] dts_res += get_pred_result(boxes, scores, labels, im_id) end_time = time.time() print("batch id: {}, time: {}".format(batch_id, end_time - start_time)) total_time += end_time - start_time with open("yolov3_result.json", 'w') as outfile: json.dump(dts_res, outfile) print("start evaluate detection result with coco api") coco = COCO(os.path.join(cfg.data_dir, test_list)) cocoDt = coco.loadRes("yolov3_result.json") cocoEval = COCOeval(coco, cocoDt, 'bbox') cocoEval.evaluate() cocoEval.accumulate() cocoEval.summarize() print("evaluate done.") print("Time per batch: {}".format(total_time / batch_id)) if __name__ == '__main__': args = parse_args() print_arguments(args) eval()