# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import os import sys import math import random import functools try: import cPickle as pickle from cStringIO import StringIO except ImportError: import pickle from io import BytesIO import numpy as np import paddle from PIL import Image, ImageEnhance import logging from .reader_utils import DataReader logger = logging.getLogger(__name__) python_ver = sys.version_info class KineticsReader(DataReader): """ Data reader for kinetics dataset of two format mp4 and pkl. 1. mp4, the original format of kinetics400 2. pkl, the mp4 was decoded previously and stored as pkl In both case, load the data, and then get the frame data in the form of numpy and label as an integer. dataset cfg: format num_classes seg_num short_size target_size num_reader_threads buf_size image_mean image_std batch_size list """ def __init__(self, name, mode, cfg): self.name = name self.mode = mode self.format = cfg.MODEL.format self.num_classes = cfg.MODEL.num_classes self.seg_num = cfg.MODEL.seg_num self.seglen = cfg.MODEL.seglen self.short_size = cfg[mode.upper()]['short_size'] self.target_size = cfg[mode.upper()]['target_size'] self.num_reader_threads = cfg[mode.upper()]['num_reader_threads'] self.buf_size = cfg[mode.upper()]['buf_size'] self.img_mean = np.array(cfg.MODEL.image_mean).reshape( [3, 1, 1]).astype(np.float32) self.img_std = np.array(cfg.MODEL.image_std).reshape( [3, 1, 1]).astype(np.float32) # set batch size and file list self.batch_size = cfg[mode.upper()]['batch_size'] self.filelist = cfg[mode.upper()]['filelist'] def create_reader(self): _reader = _reader_creator(self.filelist, self.mode, seg_num=self.seg_num, seglen = self.seglen, \ short_size = self.short_size, target_size = self.target_size, \ img_mean = self.img_mean, img_std = self.img_std, \ shuffle = (self.mode == 'train'), \ num_threads = self.num_reader_threads, \ buf_size = self.buf_size, format = self.format) def _batch_reader(): batch_out = [] for imgs, label in _reader(): if imgs is None: continue batch_out.append((imgs, label)) if len(batch_out) == self.batch_size: yield batch_out batch_out = [] return _batch_reader def _reader_creator(pickle_list, mode, seg_num, seglen, short_size, target_size, img_mean, img_std, shuffle=False, num_threads=1, buf_size=1024, format='pkl'): def reader(): with open(pickle_list) as flist: lines = [line.strip() for line in flist] if shuffle: random.shuffle(lines) for line in lines: pickle_path = line.strip() yield [pickle_path] if format == 'pkl': decode_func = decode_pickle elif format == 'mp4': decode_func = decode_mp4 else: raise "Not implemented format {}".format(format) mapper = functools.partial( decode_func, mode=mode, seg_num=seg_num, seglen=seglen, short_size=short_size, target_size=target_size, img_mean=img_mean, img_std=img_std) return paddle.reader.xmap_readers(mapper, reader, num_threads, buf_size) def decode_mp4(sample, mode, seg_num, seglen, short_size, target_size, img_mean, img_std): sample = sample[0].split(' ') mp4_path = sample[0] # when infer, we store vid as label label = int(sample[1]) try: imgs = mp4_loader(mp4_path, seg_num, seglen, mode) if len(imgs) < 1: logger.error('{} frame length {} less than 1.'.format(mp4_path, len(imgs))) return None, None except: logger.error('Error when loading {}'.format(mp4_path)) return None, None return imgs_transform(imgs, label, mode, seg_num, seglen, \ short_size, target_size, img_mean, img_std) def decode_pickle(sample, mode, seg_num, seglen, short_size, target_size, img_mean, img_std): pickle_path = sample[0] try: if python_ver < (3, 0): data_loaded = pickle.load(open(pickle_path, 'rb')) else: data_loaded = pickle.load(open(pickle_path, 'rb'), encoding='bytes') vid, label, frames = data_loaded if len(frames) < 1: logger.error('{} frame length {} less than 1.'.format(pickle_path, len(frames))) return None, None except: logger.info('Error when loading {}'.format(pickle_path)) return None, None if mode == 'train' or mode == 'valid' or mode == 'test': ret_label = label elif mode == 'infer': ret_label = vid imgs = video_loader(frames, seg_num, seglen, mode) return imgs_transform(imgs, ret_label, mode, seg_num, seglen, \ short_size, target_size, img_mean, img_std) def imgs_transform(imgs, label, mode, seg_num, seglen, short_size, target_size, img_mean, img_std): imgs = group_scale(imgs, short_size) if mode == 'train': imgs = group_random_crop(imgs, target_size) imgs = group_random_flip(imgs) else: imgs = group_center_crop(imgs, target_size) np_imgs = (np.array(imgs[0]).astype('float32').transpose( (2, 0, 1))).reshape(1, 3, target_size, target_size) / 255 for i in range(len(imgs) - 1): img = (np.array(imgs[i + 1]).astype('float32').transpose( (2, 0, 1))).reshape(1, 3, target_size, target_size) / 255 np_imgs = np.concatenate((np_imgs, img)) imgs = np_imgs imgs -= img_mean imgs /= img_std imgs = np.reshape(imgs, (seg_num, seglen * 3, target_size, target_size)) return imgs, label def group_random_crop(img_group, target_size): w, h = img_group[0].size th, tw = target_size, target_size assert (w >= target_size) and (h >= target_size), \ "image width({}) and height({}) should be larger than crop size".format(w, h, target_size) out_images = [] x1 = random.randint(0, w - tw) y1 = random.randint(0, h - th) for img in img_group: if w == tw and h == th: out_images.append(img) else: out_images.append(img.crop((x1, y1, x1 + tw, y1 + th))) return out_images def group_random_flip(img_group): v = random.random() if v < 0.5: ret = [img.transpose(Image.FLIP_LEFT_RIGHT) for img in img_group] return ret else: return img_group def group_center_crop(img_group, target_size): img_crop = [] for img in img_group: w, h = img.size th, tw = target_size, target_size assert (w >= target_size) and (h >= target_size), \ "image width({}) and height({}) should be larger than crop size".format(w, h, target_size) x1 = int(round((w - tw) / 2.)) y1 = int(round((h - th) / 2.)) img_crop.append(img.crop((x1, y1, x1 + tw, y1 + th))) return img_crop def group_scale(imgs, target_size): resized_imgs = [] for i in range(len(imgs)): img = imgs[i] w, h = img.size if (w <= h and w == target_size) or (h <= w and h == target_size): resized_imgs.append(img) continue if w < h: ow = target_size oh = int(target_size * 4.0 / 3.0) resized_imgs.append(img.resize((ow, oh), Image.BILINEAR)) else: oh = target_size ow = int(target_size * 4.0 / 3.0) resized_imgs.append(img.resize((ow, oh), Image.BILINEAR)) return resized_imgs def imageloader(buf): if isinstance(buf, str): img = Image.open(StringIO(buf)) else: img = Image.open(BytesIO(buf)) return img.convert('RGB') def video_loader(frames, nsample, seglen, mode): videolen = len(frames) average_dur = int(videolen / nsample) imgs = [] for i in range(nsample): idx = 0 if mode == 'train': if average_dur >= seglen: idx = random.randint(0, average_dur - seglen) idx += i * average_dur elif average_dur >= 1: idx += i * average_dur else: idx = i else: if average_dur >= seglen: idx = (average_dur - seglen) // 2 idx += i * average_dur elif average_dur >= 1: idx += i * average_dur else: idx = i for jj in range(idx, idx + seglen): imgbuf = frames[int(jj % videolen)] img = imageloader(imgbuf) imgs.append(img) return imgs def mp4_loader(filepath, nsample, seglen, mode): cap = cv2.VideoCapture(filepath) videolen = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) average_dur = int(videolen / nsample) sampledFrames = [] for i in range(videolen): ret, frame = cap.read() # maybe first frame is empty if ret == False: continue img = frame[:, :, ::-1] sampledFrames.append(img) imgs = [] for i in range(nsample): idx = 0 if mode == 'train': if average_dur >= seglen: idx = random.randint(0, average_dur - seglen) idx += i * average_dur elif average_dur >= 1: idx += i * average_dur else: idx = i else: if average_dur >= seglen: idx = (average_dur - 1) // 2 idx += i * average_dur elif average_dur >= 1: idx += i * average_dur else: idx = i for jj in range(idx, idx + seglen): imgbuf = sampledFrames[int(jj % videolen)] img = Image.fromarray(imgbuf, mode='RGB') imgs.append(img) return imgs