import logging import numpy as np import pickle # disable gpu training for this example import os os.environ['CUDA_VISIBLE_DEVICES'] = '' import paddle import paddle.fluid as fluid from args import parse_args from criteo_reader import CriteoDataset from network_conf import ctr_deepfm_model import utils logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger('fluid') logger.setLevel(logging.INFO) def infer(): args = parse_args() place = fluid.CPUPlace() inference_scope = fluid.Scope() test_files = [ os.path.join(args.test_data_dir, x) for x in os.listdir(args.test_data_dir) ] criteo_dataset = CriteoDataset() criteo_dataset.setup(args.feat_dict) test_reader = paddle.batch( criteo_dataset.test(test_files), batch_size=args.batch_size) startup_program = fluid.framework.Program() test_program = fluid.framework.Program() cur_model_path = os.path.join(args.model_output_dir, 'epoch_' + args.test_epoch) with fluid.scope_guard(inference_scope): with fluid.framework.program_guard(test_program, startup_program): loss, auc, data_list, auc_states = ctr_deepfm_model( args.embedding_size, args.num_field, args.num_feat, args.layer_sizes, args.act, args.reg) exe = fluid.Executor(place) feeder = fluid.DataFeeder(feed_list=data_list, place=place) main_program = fluid.default_main_program() fluid.load(main_program, cur_model_path, exe) for var in auc_states: # reset auc states set_zero(var.name, scope=inference_scope, place=place) loss_all = 0 num_ins = 0 for batch_id, data_test in enumerate(test_reader()): loss_val, auc_val = exe.run(test_program, feed=feeder.feed(data_test), fetch_list=[loss.name, auc.name]) num_ins += len(data_test) loss_all += loss_val logger.info('TEST --> batch: {} loss: {} auc_val: {}'.format( batch_id, loss_all / num_ins, auc_val)) print( 'The last log info is the total Logloss and AUC for all test data. ' ) def set_zero(var_name, scope=fluid.global_scope(), place=fluid.CPUPlace(), param_type="int64"): """ Set tensor of a Variable to zero. Args: var_name(str): name of Variable scope(Scope): Scope object, default is fluid.global_scope() place(Place): Place object, default is fluid.CPUPlace() param_type(str): param data type, default is int64 """ param = scope.var(var_name).get_tensor() param_array = np.zeros(param._get_dims()).astype(param_type) param.set(param_array, place) if __name__ == '__main__': utils.check_version() infer()