import gradio as gr import os from paddlespeech.cli.asr.infer import ASRExecutor from paddlespeech.cli.text.infer import TextExecutor import librosa import soundfile as sf def model_inference(audio): asr = ASRExecutor() text_punc = TextExecutor() if not isinstance(audio, str): audio = str(audio.name) y, sr = librosa.load(audio) if sr != 16000: # Optional resample to 16000 y = librosa.resample(y, sr, 16000) sf.write(audio, y, 16000) result = asr(audio_file=audio, model='conformer_online_wenetspeech', device="cpu") result = text_punc( text=result, model='ernie_linear_p7_wudao', device="cpu") return result def clear_all(): return None, None, None, None with gr.Blocks() as demo: gr.Markdown("ASR") with gr.Column(scale=1, min_width=100): audio_input = gr.Audio( value='https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav', type="file", label=" Input From File") micro_input = gr.inputs.Audio( source="microphone", type='filepath', label="Input From Mic") with gr.Row(): btn1 = gr.Button("Clear") btn2 = gr.Button("Submit File") btn3 = gr.Button("Submit Micro") audio_text_output = gr.Textbox(placeholder="Result...", lines=10) micro_text_output = gr.Textbox(placeholder="Micro Result...", lines=10) btn3.click( fn=model_inference, inputs=[micro_input], outputs=micro_text_output, scroll_to_output=True) btn2.click( fn=model_inference, inputs=[audio_input], outputs=audio_text_output, scroll_to_output=True) btn1.click( fn=clear_all, inputs=None, outputs=[ audio_input, micro_input, audio_text_output, micro_text_output ]) gr.Button.style(1) demo.launch()