from __future__ import print_function import paddle.fluid as fluid from paddle.fluid.dygraph import Embedding, LayerNorm, FC, to_variable, Layer, guard import numpy as np import paddle import paddle.dataset.wmt16 as wmt16 # Copy from models class TrainTaskConfig(object): """ TrainTaskConfig """ # support both CPU and GPU now. use_gpu = True # the epoch number to train. pass_num = 30 # the number of sequences contained in a mini-batch. # deprecated, set batch_size in args. batch_size = 32 # the hyper parameters for Adam optimizer. # This static learning_rate will be multiplied to the LearningRateScheduler # derived learning rate the to get the final learning rate. learning_rate = 2.0 beta1 = 0.9 beta2 = 0.997 eps = 1e-9 # the parameters for learning rate scheduling. warmup_steps = 8000 # the weight used to mix up the ground-truth distribution and the fixed # uniform distribution in label smoothing when training. # Set this as zero if label smoothing is not wanted. label_smooth_eps = 0.1 class ModelHyperParams(object): """ ModelHyperParams """ # These following five vocabularies related configurations will be set # automatically according to the passed vocabulary path and special tokens. # size of source word dictionary. src_vocab_size = 10000 # size of target word dictionay trg_vocab_size = 10000 # # index for token # bos_idx = 0 # # index for token # eos_idx = 1 # # index for token # unk_idx = 2 src_pad_idx = 0 # index for token in target language. trg_pad_idx = 1 # max length of sequences deciding the size of position encoding table. max_length = 50 # the dimension for word embeddings, which is also the last dimension of # the input and output of multi-head attention, position-wise feed-forward # networks, encoder and decoder. d_model = 512 # size of the hidden layer in position-wise feed-forward networks. d_inner_hid = 2048 # the dimension that keys are projected to for dot-product attention. d_key = 64 # the dimension that values are projected to for dot-product attention. d_value = 64 # number of head used in multi-head attention. n_head = 8 # number of sub-layers to be stacked in the encoder and decoder. n_layer = 6 # dropout rates of different modules. prepostprocess_dropout = 0.1 attention_dropout = 0.1 relu_dropout = 0.1 # to process before each sub-layer preprocess_cmd = "n" # layer normalization # to process after each sub-layer postprocess_cmd = "da" # dropout + residual connection # random seed used in dropout for CE. dropout_seed = None # the flag indicating whether to share embedding and softmax weights. # vocabularies in source and target should be same for weight sharing. weight_sharing = False # The placeholder for batch_size in compile time. Must be -1 currently to be # consistent with some ops' infer-shape output in compile time, such as the # sequence_expand op used in beamsearch decoder. batch_size = -1 # The placeholder for squence length in compile time. seq_len = ModelHyperParams.max_length # Here list the data shapes and data types of all inputs. # The shapes here act as placeholder and are set to pass the infer-shape in # compile time. input_descs = { # The actual data shape of src_word is: # [batch_size, max_src_len_in_batch, 1] "src_word": [(batch_size, seq_len, 1), "int64", 2], # The actual data shape of src_pos is: # [batch_size, max_src_len_in_batch, 1] "src_pos": [(batch_size, seq_len, 1), "int64"], # This input is used to remove attention weights on paddings in the # encoder. # The actual data shape of src_slf_attn_bias is: # [batch_size, n_head, max_src_len_in_batch, max_src_len_in_batch] "src_slf_attn_bias": [(batch_size, ModelHyperParams.n_head, seq_len, seq_len), "float32"], # The actual data shape of trg_word is: # [batch_size, max_trg_len_in_batch, 1] "trg_word": [(batch_size, seq_len, 1), "int64", 2], # lod_level is only used in fast decoder. # The actual data shape of trg_pos is: # [batch_size, max_trg_len_in_batch, 1] "trg_pos": [(batch_size, seq_len, 1), "int64"], # This input is used to remove attention weights on paddings and # subsequent words in the decoder. # The actual data shape of trg_slf_attn_bias is: # [batch_size, n_head, max_trg_len_in_batch, max_trg_len_in_batch] "trg_slf_attn_bias": [(batch_size, ModelHyperParams.n_head, seq_len, seq_len), "float32"], # This input is used to remove attention weights on paddings of the source # input in the encoder-decoder attention. # The actual data shape of trg_src_attn_bias is: # [batch_size, n_head, max_trg_len_in_batch, max_src_len_in_batch] "trg_src_attn_bias": [(batch_size, ModelHyperParams.n_head, seq_len, seq_len), "float32"], # This input is used in independent decoder program for inference. # The actual data shape of enc_output is: # [batch_size, max_src_len_in_batch, d_model] "enc_output": [(batch_size, seq_len, ModelHyperParams.d_model), "float32"], # The actual data shape of label_word is: # [batch_size * max_trg_len_in_batch, 1] "lbl_word": [(batch_size * seq_len, 1), "int64"], # This input is used to mask out the loss of paddding tokens. # The actual data shape of label_weight is: # [batch_size * max_trg_len_in_batch, 1] "lbl_weight": [(batch_size * seq_len, 1), "float32"], # This input is used in beam-search decoder. "init_score": [(batch_size, 1), "float32", 2], # This input is used in beam-search decoder for the first gather # (cell states updation) "init_idx": [(batch_size, ), "int32"], } # Names of word embedding table which might be reused for weight sharing. word_emb_param_names = ( "src_word_emb_table", "trg_word_emb_table", ) # Names of position encoding table which will be initialized externally. pos_enc_param_names = ( "src_pos_enc_table", "trg_pos_enc_table", ) # separated inputs for different usages. encoder_data_input_fields = ( "src_word", "src_pos", "src_slf_attn_bias", ) decoder_data_input_fields = ( "trg_word", "trg_pos", "trg_slf_attn_bias", "trg_src_attn_bias", "enc_output", ) label_data_input_fields = ( "lbl_word", "lbl_weight", ) # In fast decoder, trg_pos (only containing the current time step) is generated # by ops and trg_slf_attn_bias is not needed. fast_decoder_data_input_fields = ( "trg_word", "init_score", "init_idx", "trg_src_attn_bias", ) def merge_cfg_from_list(cfg_list, g_cfgs): """ Set the above global configurations using the cfg_list. """ assert len(cfg_list) % 2 == 0 for key, value in zip(cfg_list[0::2], cfg_list[1::2]): for g_cfg in g_cfgs: if hasattr(g_cfg, key): try: value = eval(value) except Exception: # for file path pass setattr(g_cfg, key, value) break def position_encoding_init(n_position, d_pos_vec): """ Generate the initial values for the sinusoid position encoding table. """ channels = d_pos_vec position = np.arange(n_position) num_timescales = channels // 2 log_timescale_increment = (np.log(float(1e4) / float(1)) / (num_timescales - 1)) inv_timescales = np.exp(np.arange( num_timescales)) * -log_timescale_increment scaled_time = np.expand_dims(position, 1) * np.expand_dims(inv_timescales, 0) signal = np.concatenate([np.sin(scaled_time), np.cos(scaled_time)], axis=1) signal = np.pad(signal, [[0, 0], [0, np.mod(channels, 2)]], 'constant') position_enc = signal return position_enc.astype("float32") def create_data(np_values, is_static=False): """ create_data :param np_values: :param is_static: :return: """ # pdb.set_trace() [ src_word_np, src_pos_np, trg_word_np, trg_pos_np, src_slf_attn_bias_np, trg_slf_attn_bias_np, trg_src_attn_bias_np, lbl_word_np, lbl_weight_np ] = np_values if is_static: return [ src_word_np, src_pos_np, src_slf_attn_bias_np, trg_word_np, trg_pos_np, trg_slf_attn_bias_np, trg_src_attn_bias_np, lbl_word_np, lbl_weight_np ] else: enc_inputs = [ to_variable( src_word_np, name='src_word'), to_variable( src_pos_np, name='src_pos'), to_variable( src_slf_attn_bias_np, name='src_slf_attn_bias') ] dec_inputs = [ to_variable( trg_word_np, name='trg_word'), to_variable( trg_pos_np, name='trg_pos'), to_variable( trg_slf_attn_bias_np, name='trg_slf_attn_bias'), to_variable( trg_src_attn_bias_np, name='trg_src_attn_bias') ] label = to_variable(lbl_word_np, name='lbl_word') weight = to_variable(lbl_weight_np, name='lbl_weight') return enc_inputs, dec_inputs, label, weight def create_feed_dict_list(data, init=False): """ create_feed_dict_list :param data: :param init: :return: """ if init: data_input_names = encoder_data_input_fields + \ decoder_data_input_fields[:-1] + label_data_input_fields + pos_enc_param_names else: data_input_names = encoder_data_input_fields + \ decoder_data_input_fields[:-1] + label_data_input_fields feed_dict_list = dict() for i in range(len(data_input_names)): feed_dict_list[data_input_names[i]] = data[i] return feed_dict_list def make_all_inputs(input_fields): """ Define the input data layers for the transformer model. """ inputs = [] for input_field in input_fields: input_var = fluid.layers.data( name=input_field, shape=input_descs[input_field][0], dtype=input_descs[input_field][1], lod_level=input_descs[input_field][2] if len(input_descs[input_field]) == 3 else 0, append_batch_size=False) inputs.append(input_var) return inputs def prepare_batch_input(insts, src_pad_idx, trg_pad_idx, n_head): """ Pad the instances to the max sequence length in batch, and generate the corresponding position data and attention bias. Then, convert the numpy data to tensors and return a dict mapping names to tensors. """ def __pad_batch_data(insts, pad_idx, n_head, is_target=False, is_label=False, return_attn_bias=True, return_max_len=True, return_num_token=False): """ Pad the instances to the max sequence length in batch, and generate the corresponding position data and attention bias. """ return_list = [] max_len = max(len(inst) for inst in insts) # Any token included in dict can be used to pad, since the paddings' loss # will be masked out by weights and make no effect on parameter gradients. inst_data = np.array( [inst + [pad_idx] * (max_len - len(inst)) for inst in insts]) return_list += [inst_data.astype("int64").reshape([-1, 1])] if is_label: # label weight inst_weight = np.array([[1.] * len(inst) + [0.] * (max_len - len(inst)) for inst in insts]) return_list += [inst_weight.astype("float32").reshape([-1, 1])] else: # position data inst_pos = np.array([ list(range(0, len(inst))) + [0] * (max_len - len(inst)) for inst in insts ]) return_list += [inst_pos.astype("int64").reshape([-1, 1])] if return_attn_bias: if is_target: # This is used to avoid attention on paddings and subsequent # words. slf_attn_bias_data = np.ones( (inst_data.shape[0], max_len, max_len)) slf_attn_bias_data = np.triu( slf_attn_bias_data, 1).reshape([-1, 1, max_len, max_len]) slf_attn_bias_data = np.tile(slf_attn_bias_data, [1, n_head, 1, 1]) * [-1e9] else: # This is used to avoid attention on paddings. slf_attn_bias_data = np.array([[0] * len(inst) + [-1e9] * (max_len - len(inst)) for inst in insts]) slf_attn_bias_data = np.tile( slf_attn_bias_data.reshape([-1, 1, 1, max_len]), [1, n_head, max_len, 1]) return_list += [slf_attn_bias_data.astype("float32")] if return_max_len: return_list += [max_len] if return_num_token: num_token = 0 for inst in insts: num_token += len(inst) return_list += [num_token] return return_list if len(return_list) > 1 else return_list[0] src_word, src_pos, src_slf_attn_bias, src_max_len = __pad_batch_data( [inst[0] for inst in insts], src_pad_idx, n_head, is_target=False) src_word = src_word.reshape(-1, src_max_len, 1) src_pos = src_pos.reshape(-1, src_max_len, 1) trg_word, trg_pos, trg_slf_attn_bias, trg_max_len = __pad_batch_data( [inst[1] for inst in insts], trg_pad_idx, n_head, is_target=True) trg_word = trg_word.reshape(-1, trg_max_len, 1) trg_pos = trg_pos.reshape(-1, trg_max_len, 1) trg_src_attn_bias = np.tile(src_slf_attn_bias[:, :, ::src_max_len, :], [1, 1, trg_max_len, 1]).astype("float32") lbl_word, lbl_weight, num_token = __pad_batch_data( [inst[2] for inst in insts], trg_pad_idx, n_head, is_target=False, is_label=True, return_attn_bias=False, return_max_len=False, return_num_token=True) return [ src_word, src_pos, trg_word, trg_pos, src_slf_attn_bias, trg_slf_attn_bias, trg_src_attn_bias, lbl_word, lbl_weight ] pos_inp1 = position_encoding_init(ModelHyperParams.max_length + 1, ModelHyperParams.d_model) pos_inp2 = position_encoding_init(ModelHyperParams.max_length + 1, ModelHyperParams.d_model) class PrePostProcessLayer(Layer): """ PrePostProcessLayer """ def __init__(self, name_scope, process_cmd, shape_len=None): super(PrePostProcessLayer, self).__init__(name_scope) for cmd in process_cmd: if cmd == "n": self._layer_norm = LayerNorm( name_scope=self.full_name(), begin_norm_axis=shape_len - 1, param_attr=fluid.ParamAttr( initializer=fluid.initializer.Constant(1.)), bias_attr=fluid.ParamAttr( initializer=fluid.initializer.Constant(0.))) def forward(self, prev_out, out, process_cmd, dropout_rate=0.): """ forward :param prev_out: :param out: :param process_cmd: :param dropout_rate: :return: """ for cmd in process_cmd: if cmd == "a": # add residual connection out = out + prev_out if prev_out else out elif cmd == "n": # add layer normalization out = self._layer_norm(out) elif cmd == "d": # add dropout if dropout_rate: out = fluid.layers.dropout( out, dropout_prob=dropout_rate, seed=ModelHyperParams.dropout_seed, is_test=False) return out class PositionwiseFeedForwardLayer(Layer): """ PositionwiseFeedForwardLayer """ def __init__(self, name_scope, d_inner_hid, d_hid, dropout_rate): super(PositionwiseFeedForwardLayer, self).__init__(name_scope) self._i2h = FC(name_scope=self.full_name(), size=d_inner_hid, num_flatten_dims=2, act="relu") self._h2o = FC(name_scope=self.full_name(), size=d_hid, num_flatten_dims=2) self._dropout_rate = dropout_rate def forward(self, x): """ forward :param x: :return: """ hidden = self._i2h(x) if self._dropout_rate: hidden = fluid.layers.dropout( hidden, dropout_prob=self._dropout_rate, seed=ModelHyperParams.dropout_seed, is_test=False) out = self._h2o(hidden) return out class MultiHeadAttentionLayer(Layer): """ MultiHeadAttentionLayer """ def __init__(self, name_scope, d_key, d_value, d_model, n_head=1, dropout_rate=0., cache=None, gather_idx=None, static_kv=False): super(MultiHeadAttentionLayer, self).__init__(name_scope) self._n_head = n_head self._d_key = d_key self._d_value = d_value self._d_model = d_model self._dropout_rate = dropout_rate self._q_fc = FC(name_scope=self.full_name(), size=d_key * n_head, bias_attr=False, num_flatten_dims=2) self._k_fc = FC(name_scope=self.full_name(), size=d_key * n_head, bias_attr=False, num_flatten_dims=2) self._v_fc = FC(name_scope=self.full_name(), size=d_value * n_head, bias_attr=False, num_flatten_dims=2) self._proj_fc = FC(name_scope=self.full_name(), size=self._d_model, bias_attr=False, num_flatten_dims=2) def forward(self, queries, keys, values, attn_bias): """ forward :param queries: :param keys: :param values: :param attn_bias: :return: """ # compute q ,k ,v keys = queries if keys is None else keys values = keys if values is None else values q = self._q_fc(queries) k = self._k_fc(keys) v = self._v_fc(values) # split head reshaped_q = fluid.layers.reshape( x=q, shape=[0, 0, self._n_head, self._d_key], inplace=False) transpose_q = fluid.layers.transpose(x=reshaped_q, perm=[0, 2, 1, 3]) reshaped_k = fluid.layers.reshape( x=k, shape=[0, 0, self._n_head, self._d_key], inplace=False) transpose_k = fluid.layers.transpose(x=reshaped_k, perm=[0, 2, 1, 3]) reshaped_v = fluid.layers.reshape( x=v, shape=[0, 0, self._n_head, self._d_value], inplace=False) transpose_v = fluid.layers.transpose(x=reshaped_v, perm=[0, 2, 1, 3]) # scale dot product attention product = fluid.layers.matmul( x=transpose_q, y=transpose_k, transpose_y=True, alpha=self._d_model**-0.5) if attn_bias: product += attn_bias weights = fluid.layers.softmax(product) if self._dropout_rate: weights_droped = fluid.layers.dropout( weights, dropout_prob=self._dropout_rate, seed=ModelHyperParams.dropout_seed, is_test=False) out = fluid.layers.matmul(weights_droped, transpose_v) else: out = fluid.layers.matmul(weights, transpose_v) # combine heads if len(out.shape) != 4: raise ValueError("Input(x) should be a 4-D Tensor.") trans_x = fluid.layers.transpose(out, perm=[0, 2, 1, 3]) final_out = fluid.layers.reshape( x=trans_x, shape=[0, 0, trans_x.shape[2] * trans_x.shape[3]], inplace=False) # fc to output proj_out = self._proj_fc(final_out) return proj_out class EncoderSubLayer(Layer): """ EncoderSubLayer """ def __init__(self, name_scope, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, preprocess_cmd="n", postprocess_cmd="da"): super(EncoderSubLayer, self).__init__(name_scope) self._preprocess_cmd = preprocess_cmd self._postprocess_cmd = postprocess_cmd self._prepostprocess_dropout = prepostprocess_dropout self._preprocess_layer = PrePostProcessLayer(self.full_name(), self._preprocess_cmd, 3) self._multihead_attention_layer = MultiHeadAttentionLayer( self.full_name(), d_key, d_value, d_model, n_head, attention_dropout) self._postprocess_layer = PrePostProcessLayer( self.full_name(), self._postprocess_cmd, None) self._preprocess_layer2 = PrePostProcessLayer(self.full_name(), self._preprocess_cmd, 3) self._positionwise_feed_forward = PositionwiseFeedForwardLayer( self.full_name(), d_inner_hid, d_model, relu_dropout) self._postprocess_layer2 = PrePostProcessLayer( self.full_name(), self._postprocess_cmd, None) def forward(self, enc_input, attn_bias): """ forward :param enc_input: :param attn_bias: :return: """ pre_process_multihead = self._preprocess_layer( None, enc_input, self._preprocess_cmd, self._prepostprocess_dropout) attn_output = self._multihead_attention_layer(pre_process_multihead, None, None, attn_bias) attn_output = self._postprocess_layer(enc_input, attn_output, self._postprocess_cmd, self._prepostprocess_dropout) pre_process2_output = self._preprocess_layer2( None, attn_output, self._preprocess_cmd, self._prepostprocess_dropout) ffd_output = self._positionwise_feed_forward(pre_process2_output) return self._postprocess_layer2(attn_output, ffd_output, self._postprocess_cmd, self._prepostprocess_dropout) class EncoderLayer(Layer): """ encoder """ def __init__(self, name_scope, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, preprocess_cmd="n", postprocess_cmd="da"): super(EncoderLayer, self).__init__(name_scope) self._preprocess_cmd = preprocess_cmd self._encoder_sublayers = list() self._prepostprocess_dropout = prepostprocess_dropout self._n_layer = n_layer self._preprocess_layer = PrePostProcessLayer(self.full_name(), self._preprocess_cmd, 3) for i in range(n_layer): self._encoder_sublayers.append( self.add_sublayer( 'esl_%d' % i, EncoderSubLayer( self.full_name(), n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, preprocess_cmd, postprocess_cmd))) def forward(self, enc_input, attn_bias): """ forward :param enc_input: :param attn_bias: :return: """ for i in range(self._n_layer): enc_output = self._encoder_sublayers[i](enc_input, attn_bias) enc_input = enc_output return self._preprocess_layer(None, enc_output, self._preprocess_cmd, self._prepostprocess_dropout) class PrepareEncoderDecoderLayer(Layer): """ PrepareEncoderDecoderLayer """ def __init__(self, name_scope, src_vocab_size, src_emb_dim, src_max_len, dropout_rate, word_emb_param_name=None, pos_enc_param_name=None): super(PrepareEncoderDecoderLayer, self).__init__(name_scope) self._src_max_len = src_max_len self._src_emb_dim = src_emb_dim self._src_vocab_size = src_vocab_size self._dropout_rate = dropout_rate self._input_emb = Embedding( name_scope=self.full_name(), size=[src_vocab_size, src_emb_dim], padding_idx=0, param_attr=fluid.ParamAttr( name=word_emb_param_name, initializer=fluid.initializer.Normal(0., src_emb_dim**-0.5))) if pos_enc_param_name is pos_enc_param_names[0]: pos_inp = pos_inp1 else: pos_inp = pos_inp2 self._pos_emb = Embedding( name_scope=self.full_name(), size=[self._src_max_len, src_emb_dim], param_attr=fluid.ParamAttr( name=pos_enc_param_name, initializer=fluid.initializer.NumpyArrayInitializer(pos_inp), trainable=False)) # use in dygraph_mode to fit different length batch # self._pos_emb._w = to_variable( # position_encoding_init(self._src_max_len, self._src_emb_dim)) def forward(self, src_word, src_pos): """ forward :param src_word: :param src_pos: :return: """ # print("here") # print(self._input_emb._w._numpy().shape) src_word_emb = self._input_emb(src_word) src_word_emb = fluid.layers.scale( x=src_word_emb, scale=self._src_emb_dim**0.5) # # TODO change this to fit dynamic length input src_pos_emb = self._pos_emb(src_pos) src_pos_emb.stop_gradient = True enc_input = src_word_emb + src_pos_emb return fluid.layers.dropout( enc_input, dropout_prob=self._dropout_rate, seed=ModelHyperParams.dropout_seed, is_test=False) if self._dropout_rate else enc_input class WrapEncoderLayer(Layer): """ encoderlayer """ def __init__(self, name_cope, src_vocab_size, max_length, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, preprocess_cmd, postprocess_cmd, weight_sharing): """ The wrapper assembles together all needed layers for the encoder. """ super(WrapEncoderLayer, self).__init__(name_cope) self._prepare_encoder_layer = PrepareEncoderDecoderLayer( self.full_name(), src_vocab_size, d_model, max_length, prepostprocess_dropout, word_emb_param_name=word_emb_param_names[0], pos_enc_param_name=pos_enc_param_names[0]) self._encoder = EncoderLayer( self.full_name(), n_layer, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, preprocess_cmd, postprocess_cmd) def forward(self, enc_inputs): """forward""" src_word, src_pos, src_slf_attn_bias = enc_inputs enc_input = self._prepare_encoder_layer(src_word, src_pos) enc_output = self._encoder(enc_input, src_slf_attn_bias) return enc_output class DecoderSubLayer(Layer): """ decoder """ def __init__(self, name_scope, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, preprocess_cmd, postprocess_cmd, cache=None, gather_idx=None): super(DecoderSubLayer, self).__init__(name_scope) self._postprocess_cmd = postprocess_cmd self._preprocess_cmd = preprocess_cmd self._prepostprcess_dropout = prepostprocess_dropout self._pre_process_layer = PrePostProcessLayer(self.full_name(), preprocess_cmd, 3) self._multihead_attention_layer = MultiHeadAttentionLayer( self.full_name(), d_key, d_value, d_model, n_head, attention_dropout, cache=cache, gather_idx=gather_idx) self._post_process_layer = PrePostProcessLayer(self.full_name(), postprocess_cmd, None) self._pre_process_layer2 = PrePostProcessLayer(self.full_name(), preprocess_cmd, 3) self._multihead_attention_layer2 = MultiHeadAttentionLayer( self.full_name(), d_key, d_value, d_model, n_head, attention_dropout, cache=cache, gather_idx=gather_idx, static_kv=True) self._post_process_layer2 = PrePostProcessLayer(self.full_name(), postprocess_cmd, None) self._pre_process_layer3 = PrePostProcessLayer(self.full_name(), preprocess_cmd, 3) self._positionwise_feed_forward_layer = PositionwiseFeedForwardLayer( self.full_name(), d_inner_hid, d_model, relu_dropout) self._post_process_layer3 = PrePostProcessLayer(self.full_name(), postprocess_cmd, None) def forward(self, dec_input, enc_output, slf_attn_bias, dec_enc_attn_bias): """ forward :param dec_input: :param enc_output: :param slf_attn_bias: :param dec_enc_attn_bias: :return: """ pre_process_rlt = self._pre_process_layer( None, dec_input, self._preprocess_cmd, self._prepostprcess_dropout) slf_attn_output = self._multihead_attention_layer(pre_process_rlt, None, None, slf_attn_bias) slf_attn_output_pp = self._post_process_layer( dec_input, slf_attn_output, self._postprocess_cmd, self._prepostprcess_dropout) pre_process_rlt2 = self._pre_process_layer2(None, slf_attn_output_pp, self._preprocess_cmd, self._prepostprcess_dropout) enc_attn_output_pp = self._multihead_attention_layer2( pre_process_rlt2, enc_output, enc_output, dec_enc_attn_bias) enc_attn_output = self._post_process_layer2( slf_attn_output_pp, enc_attn_output_pp, self._postprocess_cmd, self._prepostprcess_dropout) pre_process_rlt3 = self._pre_process_layer3(None, enc_attn_output, self._preprocess_cmd, self._prepostprcess_dropout) ffd_output = self._positionwise_feed_forward_layer(pre_process_rlt3) dec_output = self._post_process_layer3(enc_attn_output, ffd_output, self._postprocess_cmd, self._prepostprcess_dropout) return dec_output class DecoderLayer(Layer): """ decoder """ def __init__(self, name_scope, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, preprocess_cmd, postprocess_cmd, caches=None, gather_idx=None): super(DecoderLayer, self).__init__(name_scope) self._pre_process_layer = PrePostProcessLayer(self.full_name(), preprocess_cmd, 3) self._decoder_sub_layers = list() self._n_layer = n_layer self._preprocess_cmd = preprocess_cmd self._prepostprocess_dropout = prepostprocess_dropout for i in range(n_layer): self._decoder_sub_layers.append( self.add_sublayer( 'dsl_%d' % i, DecoderSubLayer( self.full_name(), n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, preprocess_cmd, postprocess_cmd, cache=None if caches is None else caches[i], gather_idx=gather_idx))) def forward(self, dec_input, enc_output, dec_slf_attn_bias, dec_enc_attn_bias): """ forward :param dec_input: :param enc_output: :param dec_slf_attn_bias: :param dec_enc_attn_bias: :return: """ for i in range(self._n_layer): tmp_dec_output = self._decoder_sub_layers[i]( dec_input, enc_output, dec_slf_attn_bias, dec_enc_attn_bias) dec_input = tmp_dec_output dec_output = self._pre_process_layer(None, tmp_dec_output, self._preprocess_cmd, self._prepostprocess_dropout) return dec_output class WrapDecoderLayer(Layer): """ decoder """ def __init__(self, name_scope, trg_vocab_size, max_length, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, preprocess_cmd, postprocess_cmd, weight_sharing, caches=None, gather_idx=None): """ The wrapper assembles together all needed layers for the encoder. """ super(WrapDecoderLayer, self).__init__(name_scope) self._prepare_decoder_layer = PrepareEncoderDecoderLayer( self.full_name(), trg_vocab_size, d_model, max_length, prepostprocess_dropout, word_emb_param_name=word_emb_param_names[1], pos_enc_param_name=pos_enc_param_names[1]) self._decoder_layer = DecoderLayer( self.full_name(), n_layer, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, preprocess_cmd, postprocess_cmd, caches=caches, gather_idx=gather_idx) self._weight_sharing = weight_sharing if not weight_sharing: self._fc = FC(self.full_name(), size=trg_vocab_size, bias_attr=False) def forward(self, dec_inputs=None, enc_output=None): """ forward :param dec_inputs: :param enc_output: :return: """ trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias = dec_inputs dec_input = self._prepare_decoder_layer(trg_word, trg_pos) dec_output = self._decoder_layer(dec_input, enc_output, trg_slf_attn_bias, trg_src_attn_bias) dec_output_reshape = fluid.layers.reshape( dec_output, shape=[-1, dec_output.shape[-1]], inplace=False) if self._weight_sharing: predict = fluid.layers.matmul( x=dec_output_reshape, y=self._prepare_decoder_layer._input_emb._w, transpose_y=True) else: predict = self._fc(dec_output_reshape) if dec_inputs is None: # Return probs for independent decoder program. predict_out = fluid.layers.softmax(predict) return predict_out return predict class TransFormer(Layer): """ model """ def __init__(self, name_scope, src_vocab_size, trg_vocab_size, max_length, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, preprocess_cmd, postprocess_cmd, weight_sharing, label_smooth_eps): super(TransFormer, self).__init__(name_scope) self._label_smooth_eps = label_smooth_eps self._trg_vocab_size = trg_vocab_size if weight_sharing: assert src_vocab_size == trg_vocab_size, ( "Vocabularies in source and target should be same for weight sharing." ) self._wrap_encoder_layer = WrapEncoderLayer( self.full_name(), src_vocab_size, max_length, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, preprocess_cmd, postprocess_cmd, weight_sharing) self._wrap_decoder_layer = WrapDecoderLayer( self.full_name(), trg_vocab_size, max_length, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, preprocess_cmd, postprocess_cmd, weight_sharing) if weight_sharing: self._wrap_decoder_layer._prepare_decoder_layer._input_emb._w = self._wrap_encoder_layer._prepare_encoder_layer._input_emb._w def forward(self, enc_inputs, dec_inputs, label, weights): """ forward :param enc_inputs: :param dec_inputs: :param label: :param weights: :return: """ enc_output = self._wrap_encoder_layer(enc_inputs) predict = self._wrap_decoder_layer(dec_inputs, enc_output) if self._label_smooth_eps: label_out = fluid.layers.label_smooth( label=fluid.layers.one_hot( input=label, depth=self._trg_vocab_size), epsilon=self._label_smooth_eps) cost = fluid.layers.softmax_with_cross_entropy( logits=predict, label=label_out, soft_label=True if self._label_smooth_eps else False) weighted_cost = cost * weights sum_cost = fluid.layers.reduce_sum(weighted_cost) token_num = fluid.layers.reduce_sum(weights) token_num.stop_gradient = True avg_cost = sum_cost / token_num return sum_cost, avg_cost, predict, token_num def train(): """ train models :return: """ with guard(): transformer = TransFormer( 'transformer', ModelHyperParams.src_vocab_size, ModelHyperParams.trg_vocab_size, ModelHyperParams.max_length + 1, ModelHyperParams.n_layer, ModelHyperParams.n_head, ModelHyperParams.d_key, ModelHyperParams.d_value, ModelHyperParams.d_model, ModelHyperParams.d_inner_hid, ModelHyperParams.prepostprocess_dropout, ModelHyperParams.attention_dropout, ModelHyperParams.relu_dropout, ModelHyperParams.preprocess_cmd, ModelHyperParams.postprocess_cmd, ModelHyperParams.weight_sharing, TrainTaskConfig.label_smooth_eps) optimizer = fluid.optimizer.SGD(learning_rate=0.003) reader = paddle.batch( wmt16.train(ModelHyperParams.src_vocab_size, ModelHyperParams.trg_vocab_size), batch_size=TrainTaskConfig.batch_size) for i in range(200): dy_step = 0 for batch in reader(): np_values = prepare_batch_input( batch, ModelHyperParams.src_pad_idx, ModelHyperParams.trg_pad_idx, ModelHyperParams.n_head) enc_inputs, dec_inputs, label, weights = create_data(np_values) dy_sum_cost, dy_avg_cost, dy_predict, dy_token_num = transformer( enc_inputs, dec_inputs, label, weights) dy_avg_cost.backward() optimizer.minimize(dy_avg_cost) transformer.clear_gradients() dy_step = dy_step + 1 if dy_step % 10 == 0: print("pass num : {}, batch_id: {}, dy_graph avg loss: {}". format(i, dy_step, dy_avg_cost.numpy())) print("pass : {} finished".format(i)) if __name__ == '__main__': train()