import os import sys import gzip import functools import paddle.v2 as paddle import numpy as np from metrics import ndcg # ranknet is the classic pairwise learning to rank algorithm # http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf def half_ranknet(name_prefix, input_dim): """ parameter in same name will be shared in paddle framework, these parameters in ranknet can be used in shared state, e.g. left network and right network shared parameters in detail https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/api.md """ # data layer data = paddle.layer.data(name_prefix + "/data", paddle.data_type.dense_vector(input_dim)) # hidden layer hd1 = paddle.layer.fc( input=data, size=10, act=paddle.activation.Tanh(), param_attr=paddle.attr.Param(initial_std=0.01, name="hidden_w1")) # fully connect layer/ output layer output = paddle.layer.fc( input=hd1, size=1, act=paddle.activation.Linear(), param_attr=paddle.attr.Param(initial_std=0.01, name="output")) return output def ranknet(input_dim): # label layer label = paddle.layer.data("label", paddle.data_type.dense_vector(1)) # reuse the parameter in half_ranknet output_left = half_ranknet("left", input_dim) output_right = half_ranknet("right", input_dim) evaluator = paddle.evaluator.auc(input=output_left, label=label) # rankcost layer cost = paddle.layer.rank_cost( name="cost", left=output_left, right=output_right, label=label) return cost def train_ranknet(num_passes): train_reader = paddle.batch( paddle.reader.shuffle(paddle.dataset.mq2007.train, buf_size=100), batch_size=100) test_reader = paddle.batch(paddle.dataset.mq2007.test, batch_size=100) # mq2007 feature_dim = 46, dense format # fc hidden_dim = 128 feature_dim = 46 cost = ranknet(feature_dim) parameters = paddle.parameters.create(cost) trainer = paddle.trainer.SGD( cost=cost, parameters=parameters, update_equation=paddle.optimizer.Adam(learning_rate=2e-4)) # Define the input data order feeding = {"label": 0, "left/data": 1, "right/data": 2} # Define end batch and end pass event handler def event_handler(event): if isinstance(event, paddle.event.EndIteration): if event.batch_id % 100 == 0: print "Pass %d Batch %d Cost %.9f" % ( event.pass_id, event.batch_id, event.cost) else: sys.stdout.write(".") sys.stdout.flush() if isinstance(event, paddle.event.EndPass): result = trainer.test(reader=test_reader, feeding=feeding) print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics) with gzip.open("ranknet_params_%d.tar.gz" % (event.pass_id), "w") as f: parameters.to_tar(f) trainer.train( reader=train_reader, event_handler=event_handler, feeding=feeding, num_passes=num_passes) def ranknet_infer(pass_id): """ load the trained model. And predict with plain txt input """ print "Begin to Infer..." feature_dim = 46 # we just need half_ranknet to predict a rank score, which can be used in sort documents output = half_ranknet("left", feature_dim) parameters = paddle.parameters.Parameters.from_tar( gzip.open("ranknet_params_%d.tar.gz" % (pass_id - 1))) # load data of same query and relevance documents, need ranknet to rank these candidates infer_query_id = [] infer_data = [] infer_doc_index = [] # convert to mq2007 built-in data format # plain_txt_test = functools.partial( paddle.dataset.mq2007.test, format="plain_txt") for query_id, relevance_score, feature_vector in plain_txt_test(): infer_query_id.append(query_id) infer_data.append(feature_vector) # predict score of infer_data document. Re-sort the document base on predict score # in descending order. then we build the ranking documents scores = paddle.infer( output_layer=output, parameters=parameters, input=infer_data) for query_id, score in zip(infer_query_id, scores): print "query_id : ", query_id, " ranknet rank document order : ", score if __name__ == '__main__': paddle.init(use_gpu=False, trainer_count=4) pass_num = 2 train_ranknet(pass_num) ranknet_infer(pass_id=pass_num - 1)