# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse def parse_args(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( "--load_dir", type=str, default="", help="Specify the path to load trained models.") parser.add_argument( "--load_pretraining_params", type=str, default="", help="Specify the path to load pretrained model parameters, NOT including moment and learning_rate") parser.add_argument( "--batch_size", type=int, default=128, help="The sequence number of a mini-batch data. (default: %(default)d)") parser.add_argument( "--embed_size", type=int, default=512, help="The dimension of embedding table. (default: %(default)d)") parser.add_argument( "--hidden_size", type=int, default=4096, help="The size of rnn hidden unit. (default: %(default)d)") parser.add_argument( "--num_layers", type=int, default=2, help="The size of rnn layers. (default: %(default)d)") parser.add_argument( "--num_steps", type=int, default=20, help="The size of sequence len. (default: %(default)d)") parser.add_argument( "--data_path", type=str, help="all the data for train,valid,test") parser.add_argument("--vocab_path", type=str, help="vocab file path") parser.add_argument( '--use_gpu', type=bool, default=False, help='whether using gpu') parser.add_argument('--enable_ce', action='store_true') parser.add_argument('--test_nccl', action='store_true') parser.add_argument('--optim', default='adagrad', help='optimizer type') parser.add_argument('--sample_softmax', action='store_true') parser.add_argument( "--learning_rate", type=float, default=0.2, help="Learning rate used to train the model. (default: %(default)f)") parser.add_argument( "--log_interval", type=int, default=100, help="log the train loss every n batches." "(default: %(default)d)") parser.add_argument( "--save_interval", type=int, default=10000, help="log the train loss every n batches." "(default: %(default)d)") parser.add_argument( "--dev_interval", type=int, default=10000, help="cal dev loss every n batches." "(default: %(default)d)") parser.add_argument('--dropout', type=float, default=0.1) parser.add_argument('--max_grad_norm', type=float, default=10.0) parser.add_argument('--proj_clip', type=float, default=3.0) parser.add_argument('--cell_clip', type=float, default=3.0) parser.add_argument('--max_epoch', type=float, default=10) parser.add_argument('--local', type=bool, default=False) parser.add_argument('--shuffle', type=bool, default=False) parser.add_argument('--use_custom_samples', type=bool, default=False) parser.add_argument('--para_save_dir', type=str, default='model_new') parser.add_argument('--train_path', type=str, default='') parser.add_argument('--test_path', type=str, default='') parser.add_argument('--update_method', type=str, default='nccl2') parser.add_argument('--random_seed', type=int, default=0) parser.add_argument('--n_negative_samples_batch', type=int, default=8000) args = parser.parse_args() return args