""" Contains infering script for machine translation with external memory. """ import distutils.util import argparse import gzip import paddle.v2 as paddle from external_memory import ExternalMemory from model import * from data_utils import * parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( "--dict_size", default=30000, type=int, help="Vocabulary size. (default: %(default)s)") parser.add_argument( "--word_vec_dim", default=512, type=int, help="Word embedding size. (default: %(default)s)") parser.add_argument( "--hidden_size", default=1024, type=int, help="Hidden cell number in RNN. (default: %(default)s)") parser.add_argument( "--memory_slot_num", default=8, type=int, help="External memory slot number. (default: %(default)s)") parser.add_argument( "--beam_size", default=3, type=int, help="Beam search width. (default: %(default)s)") parser.add_argument( "--use_gpu", default=False, type=distutils.util.strtobool, help="Use gpu or not. (default: %(default)s)") parser.add_argument( "--trainer_count", default=1, type=int, help="Trainer number. (default: %(default)s)") parser.add_argument( "--batch_size", default=5, type=int, help="Batch size. (default: %(default)s)") parser.add_argument( "--infer_data_num", default=3, type=int, help="Instance num to infer. (default: %(default)s)") parser.add_argument( "--model_filepath", default="checkpoints/params.latest.tar.gz", type=str, help="Model filepath. (default: %(default)s)") parser.add_argument( "--memory_perturb_stddev", default=0.1, type=float, help="Memory perturb stddev for memory initialization." "(default: %(default)s)") args = parser.parse_args() def parse_beam_search_result(beam_result, dictionary): """ Beam search result parser. """ sentence_list = [] sentence = [] for word in beam_result[1]: if word != -1: sentence.append(word) else: sentence_list.append( ' '.join([dictionary.get(word) for word in sentence[1:]])) sentence = [] beam_probs = beam_result[0] beam_size = len(beam_probs[0]) beam_sentences = [ sentence_list[i:i + beam_size] for i in range(0, len(sentence_list), beam_size) ] return beam_probs, beam_sentences def infer(): """ For inferencing. """ # create network config source_words = paddle.layer.data( name="source_words", type=paddle.data_type.integer_value_sequence(args.dict_size)) beam_gen = memory_enhanced_seq2seq( encoder_input=source_words, decoder_input=None, decoder_target=None, hidden_size=args.hidden_size, word_vec_dim=args.word_vec_dim, dict_size=args.dict_size, is_generating=True, beam_size=args.beam_size) # load parameters parameters = paddle.parameters.Parameters.from_tar( gzip.open(args.model_filepath)) # prepare infer data infer_data = [] random.seed(0) # for keeping consitancy for multiple runs bounded_memory_perturbation = [[ random.gauss(0, memory_perturb_stddev) for i in xrange(args.hidden_size) ] for j in xrange(args.memory_slot_num)] test_append_reader = reader_append_wrapper( reader=paddle.dataset.wmt14.test(dict_size), append_tuple=(bounded_memory_perturbation, )) for i, item in enumerate(test_append_reader()): if i < args.infer_data_num: infer_data.append((item[0], item[3], )) # run inference beam_result = paddle.infer( output_layer=beam_gen, parameters=parameters, input=infer_data, field=['prob', 'id']) # parse beam result and print source_dict, target_dict = paddle.dataset.wmt14.get_dict(dict_size) beam_probs, beam_sentences = parse_beam_search_result(beam_result, target_dict) for i in xrange(args.infer_data_num): print "\n***************************************************\n" print "src:", ' '.join( [source_dict.get(word) for word in infer_data[i][0]]), "\n" for j in xrange(args.beam_size): print "prob = %f : %s" % (beam_probs[i][j], beam_sentences[i][j]) def main(): paddle.init(use_gpu=False, trainer_count=1) infer() if __name__ == '__main__': main()