import os import cv2 import tarfile import numpy as np from PIL import Image from os import path from paddle.v2.image import load_image import paddle.v2 as paddle NUM_CLASSES = 10784 DATA_SHAPE = [1, 48, 512] DATA_MD5 = "1de60d54d19632022144e4e58c2637b5" DATA_URL = "http://cloud.dlnel.org/filepub/?uuid=df937251-3c0b-480d-9a7b-0080dfeee65c" CACHE_DIR_NAME = "ctc_data" SAVED_FILE_NAME = "data.tar.gz" DATA_DIR_NAME = "data" TRAIN_DATA_DIR_NAME = "train_images" TEST_DATA_DIR_NAME = "test_images" TRAIN_LIST_FILE_NAME = "train.list" TEST_LIST_FILE_NAME = "test.list" class DataGenerator(object): def __init__(self): pass def train_reader(self, img_root_dir, img_label_list, batchsize): ''' Reader interface for training. :param img_root_dir: The root path of the image for training. :type img_root_dir: str :param img_label_list: The path of the file for training. :type img_label_list: str ''' img_label_lines = [] if batchsize == 1: to_file = "tmp.txt" cmd = "cat " + img_label_list + " | awk '{print $1,$2,$3,$4;}' | shuf > " + to_file print "cmd: " + cmd os.system(cmd) print "finish batch shuffle" img_label_lines = open(to_file, 'r').readlines() else: to_file = "tmp.txt" #cmd1: partial shuffle cmd = "cat " + img_label_list + " | awk '{printf(\"%04d%.4f %s\\n\", $1, rand(), $0)}' | sort | sed 1,$((1 + RANDOM % 100))d | " #cmd2: batch merge and shuffle cmd += "awk '{printf $2\" \"$3\" \"$4\" \"$5\" \"; if(NR % " + str( batchsize) + " == 0) print \"\";}' | shuf | " #cmd3: batch split cmd += "awk '{if(NF == " + str( batchsize ) + " * 4) {for(i = 0; i < " + str( batchsize ) + "; i++) print $(4*i+1)\" \"$(4*i+2)\" \"$(4*i+3)\" \"$(4*i+4);}}' > " + to_file print "cmd: " + cmd os.system(cmd) print "finish batch shuffle" img_label_lines = open(to_file, 'r').readlines() def reader(): sizes = len(img_label_lines) / batchsize for i in range(sizes): result = [] sz = [0, 0] for j in range(batchsize): line = img_label_lines[i * batchsize + j] # h, w, img_name, labels items = line.split(' ') label = [int(c) for c in items[-1].split(',')] img = Image.open(os.path.join(img_root_dir, items[ 2])).convert('L') #zhuanhuidu if j == 0: sz = img.size img = img.resize((sz[0], sz[1])) img = np.array(img) - 127.5 img = img[np.newaxis, ...] result.append([img, label]) yield result return reader def test_reader(self, img_root_dir, img_label_list): ''' Reader interface for inference. :param img_root_dir: The root path of the images for training. :type img_root_dir: str :param img_label_list: The path of the file for testing. :type img_label_list: str ''' def reader(): for line in open(img_label_list): # h, w, img_name, labels items = line.split(' ') label = [int(c) for c in items[-1].split(',')] img = Image.open(os.path.join(img_root_dir, items[2])).convert( 'L') img = np.array(img) - 127.5 img = img[np.newaxis, ...] yield img, label return reader def infer_reader(self, img_root_dir=None, img_label_list=None): '''A reader interface for inference. :param img_root_dir: The root path of the images for training. :type img_root_dir: str :param img_label_list: The path of the file for inference. It should be the path of file if img_root_dir was None. If img_label_list was set to None, it will read image path from stdin. :type img_root_dir: str ''' def reader(): if img_label_list is not None: for line in open(img_label_list): if img_root_dir is not None: # h, w, img_name, labels img_name = line.split(' ')[2] img_path = os.path.join(img_root_dir, img_name) else: img_path = line.strip("\t\n\r") img = Image.open(img_path).convert('L') img = np.array(img) - 127.5 img = img[np.newaxis, ...] yield img, label else: while True: img_path = raw_input("Please input the path of image: ") img = Image.open(img_path).convert('L') img = np.array(img) - 127.5 img = img[np.newaxis, ...] yield img, [[0]] return reader def num_classes(): '''Get classes number of this dataset. ''' return NUM_CLASSES def data_shape(): '''Get image shape of this dataset. It is a dummy shape for this dataset. ''' return DATA_SHAPE def train(batch_size, train_images_dir=None, train_list_file=None): generator = DataGenerator() if train_images_dir is None: data_dir = download_data() train_images_dir = path.join(data_dir, TRAIN_DATA_DIR_NAME) if train_list_file is None: train_list_file = path.join(data_dir, TRAIN_LIST_FILE_NAME) return generator.train_reader(train_images_dir, train_list_file, batch_size) def test(batch_size=1, test_images_dir=None, test_list_file=None): generator = DataGenerator() if test_images_dir is None: data_dir = download_data() test_images_dir = path.join(data_dir, TEST_DATA_DIR_NAME) if test_list_file is None: test_list_file = path.join(data_dir, TEST_LIST_FILE_NAME) return paddle.batch( generator.test_reader(test_images_dir, test_list_file), batch_size) def inference(infer_images_dir=None, infer_list_file=None): generator = DataGenerator() return paddle.batch( generator.infer_reader(infer_images_dir, infer_list_file), 1) def download_data(): '''Download train and test data. ''' tar_file = paddle.dataset.common.download( DATA_URL, CACHE_DIR_NAME, DATA_MD5, save_name=SAVED_FILE_NAME) data_dir = path.join(path.dirname(tar_file), DATA_DIR_NAME) if not path.isdir(data_dir): t = tarfile.open(tar_file, "r:gz") t.extractall(path=path.dirname(tar_file)) t.close() return data_dir