#Hyperparameters config #Example: SE_ResNext50_32x4d python train.py \ --model=SE_ResNeXt50_32x4d \ --batch_size=400 \ --total_images=1281167 \ --class_dim=1000 \ --image_shape=3,224,224 \ --model_save_dir=output/ \ --lr_strategy=cosine_decay \ --lr=0.1 \ --num_epochs=200 \ --l2_decay=1.2e-4 \ # >log_SE_ResNeXt50_32x4d.txt 2>&1 & #AlexNet: #python train.py \ # --model=AlexNet \ # --batch_size=256 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --model_save_dir=output/ \ # --lr_strategy=piecewise_decay \ # --num_epochs=120 \ # --lr=0.01 \ # --l2_decay=1e-4 #SqueezeNet1_0 #python train.py \ # --model=SqueezeNet1_0 \ # --batch_size=256 \ # --total_images=1281167 \ # --image_shape=3,224,224 \ # --lr_strategy=cosine_decay \ # --class_dim=1000 \ # --model_save_dir=output/ \ # --lr=0.02 \ # --num_epochs=120 \ # --l2_decay=1e-4 #SqueezeNet1_1 #python train.py \ # --model=SqueezeNet1_1 \ # --batch_size=256 \ # --total_images=1281167 \ # --image_shape=3,224,224 \ # --lr_strategy=cosine_decay \ # --class_dim=1000 \ # --model_save_dir=output/ \ # --lr=0.02 \ # --num_epochs=120 \ # --l2_decay=1e-4 #VGG11: #python train.py \ # --model=VGG11 \ # --batch_size=512 \ # --total_images=1281167 \ # --image_shape=3,224,224 \ # --lr_strategy=cosine_decay \ # --class_dim=1000 \ # --model_save_dir=output/ \ # --lr=0.1 \ # --num_epochs=90 \ # --l2_decay=2e-4 #VGG13: #python train.py # --model=VGG13 \ # --batch_size=256 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --lr_strategy=cosine_decay \ # --lr=0.01 \ # --num_epochs=90 \ # --model_save_dir=output/ \ # --l2_decay=3e-4 #VGG16: #python train.py # --model=VGG16 \ # --batch_size=256 \ # --total_images=1281167 \ # --class_dim=1000 \ # --lr_strategy=cosine_decay \ # --image_shape=3,224,224 \ # --model_save_dir=output/ \ # --lr=0.01 \ # --num_epochs=90 \ # --l2_decay=3e-4 #VGG19: #python train.py # --model=VGG19 \ # --batch_size=256 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --lr_strategy=cosine_decay \ # --lr=0.01 \ # --num_epochs=90 \ # --model_save_dir=output/ \ # --l2_decay=3e-4 #MobileNetV1: #python train.py \ # --model=MobileNet \ # --batch_size=256 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --model_save_dir=output/ \ # --lr_strategy=piecewise_decay \ # --num_epochs=120 \ # --lr=0.1 \ # --l2_decay=3e-5 #MobileNetV2_x0_25 #python train.py \ # --model=MobileNetV2_x0_25 \ # --batch_size=256 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --model_save_dir=output/ \ # --lr_strategy=cosine_decay \ # --num_epochs=240 \ # --lr=0.1 \ # --l2_decay=3e-5 \ # --lower_ratio=1.0 \ # --upper_ratio=1.0 #MobileNetV2_x0_5 #python train.py \ # --model=MobileNetV2_x0_5 \ # --batch_size=256 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --model_save_dir=output/ \ # --lr_strategy=cosine_decay \ # --num_epochs=240 \ # --lr=0.1 \ # --l2_decay=3e-5 \ # --lower_ratio=1.0 \ # --upper_ratio=1.0 #MobileNetV2_x1_0: #python train.py \ # --model=MobileNetV2_x1_0 \ # --batch_size=500 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --model_save_dir=output/ \ # --lr_strategy=cosine_decay \ # --num_epochs=240 \ # --lr=0.1 \ # --l2_decay=4e-5 #MobileNetV2_x1_5 #python train.py \ # --model=MobileNetV2_x1_5 \ # --batch_size=256 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --model_save_dir=output/ \ # --lr_strategy=cosine_decay \ # --num_epochs=240 \ # --lr=0.1 \ # --l2_decay=4e-5 #MobileNetV2_x2_0 #python train.py \ # --model=MobileNetV2_x2_0 \ # --batch_size=256 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --model_save_dir=output/ \ # --lr_strategy=cosine_decay \ # --num_epochs=240 \ # --lr=0.1 \ # --l2_decay=4e-5 #ShuffleNetV2_x0_25: #python train.py \ # --model=ShuffleNetV2_x0_25 \ # --batch_size=1024 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --model_save_dir=output/ \ # --lr_strategy=cosine_warmup_decay \ # --num_epochs=240 \ # --lr=0.5 \ # --l2_decay=3e-5 \ # --lower_scale=0.64 \ # --lower_ratio=0.8 \ # --upper_ratio=1.2 #ShuffleNetV2_x0_33: #python train.py \ # --model=ShuffleNetV2_x0_33 \ # --batch_size=1024 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --model_save_dir=output/ \ # --lr_strategy=cosine_warmup_decay \ # --num_epochs=240 \ # --lr=0.5 \ # --l2_decay=3e-5 \ # --lower_scale=0.64 \ # --lower_ratio=0.8 \ # --upper_ratio=1.2 #ShuffleNetV2_x0_5: #python train.py \ # --model=ShuffleNetV2_x0_5 \ # --batch_size=1024 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --model_save_dir=output/ \ # --lr_strategy=cosine_warmup_decay \ # --num_epochs=240 \ # --lr=0.5 \ # --l2_decay=3e-5 \ # --lower_scale=0.64 \ # --lower_ratio=0.8 \ # --upper_ratio=1.2 #ShuffleNetV2_x1_0: #python train.py \ # --model=ShuffleNetV2_x1_0 \ # --batch_size=1024 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --model_save_dir=output/ \ # --lr_strategy=cosine_warmup_decay \ # --num_epochs=240 \ # --lr=0.5 \ # --l2_decay=4e-5 \ # --lower_scale=0.2 #ShuffleNetV2_x1_5: #python train.py \ # --model=ShuffleNetV2_x1_5 \ # --batch_size=512 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --model_save_dir=output/ \ # --lr_strategy=cosine_warmup_decay \ # --num_epochs=240 \ # --lr=0.25 \ # --l2_decay=4e-5 \ # --lower_ratio=1.0 \ # --upper_ratio=1.0 #ShuffleNetV2_x2_0: #python train.py \ # --model=ShuffleNetV2_x2_0 \ # --batch_size=512 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --model_save_dir=output/ \ # --lr_strategy=cosine_warmup_decay \ # --num_epochs=240 \ # --lr=0.25 \ # --l2_decay=4e-5 #ShuffleNetV2_x1_0_swish: #python train.py \ # --model=ShuffleNetV2_x1_0_swish \ # --batch_size=1024 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --model_save_dir=output/ \ # --lr_strategy=cosine_warmup_decay \ # --lr=0.5 \ # --num_epochs=240 \ # --l2_decay=4e-5 #ResNet18: #python train.py \ # --model=ResNet18 \ # --batch_size=256 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --model_save_dir=output/ \ # --lr_strategy=cosine_decay \ # --lr=0.1 \ # --num_epochs=120 \ # --l2_decay=1e-4 #ResNet34: #python train.py \ # --model=ResNet34 \ # --batch_size=256 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --model_save_dir=output/ \ # --lr_strategy=cosine_decay \ # --lr=0.1 \ # --num_epochs=120 \ # --l2_decay=1e-4 #ResNet50: #python train.py \ # --model=ResNet50 \ # --batch_size=256 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --model_save_dir=output/ \ # --lr_strategy=piecewise_decay \ # --num_epochs=120 \ # --lr=0.1 \ # --l2_decay=1e-4 #ResNet50_vc #python train.py # --model=ResNet50_vc \ # --batch_size=256 \ # --total_images=1281167 \ # --image_shape=3,224,224 \ # --class_dim=1000 \ # --lr_strategy=cosine_decay \ # --lr=0.1 \ # --num_epochs=200 \ # --model_save_dir=output/ \ # --l2_decay=1e-4 \ #ResNet50_vd #python train.py # --model=ResNet50_vd \ # --batch_size=256 \ # --total_images=1281167 \ # --image_shape=3,224,224 \ # --class_dim=1000 \ # --lr_strategy=cosine_decay \ # --lr=0.1 \ # --num_epochs=200 \ # --model_save_dir=output/ \ # --l2_decay=7e-5 \ # --use_mixup=True \ # --use_label_smoothing=True \ # --label_smoothing_epsilon=0.1 #ResNet101: #python train.py \ # --model=ResNet101 \ # --batch_size=256 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --model_save_dir=output/ \ # --lr_strategy=piecewise_decay \ # --num_epochs=120 \ # --lr=0.1 \ # --l2_decay=1e-4 #ResNet101_vd #python train.py # --model=ResNet101_vd \ # --batch_size=256 \ # --total_images=1281167 \ # --image_shape=3,224,224 \ # --class_dim=1000 \ # --lr_strategy=cosine_decay \ # --lr=0.1 \ # --num_epochs=200 \ # --model_save_dir=output/ \ # --l2_decay=1e-4 \ # --use_mixup=True \ # --use_label_smoothing=True \ # --label_smoothing_epsilon=0.1 #ResNet152: #python train.py \ # --model=ResNet152 \ # --batch_size=256 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --model_save_dir=output/ \ # --lr_strategy=piecewise_decay \ # --lr=0.1 \ # --num_epochs=120 \ # --l2_decay=1e-4 #ResNet152_vd #python train.py # --model=ResNet152_vd \ # --batch_size=256 \ # --total_images=1281167 \ # --image_shape=3,224,224 \ # --class_dim=1000 \ # --lr_strategy=cosine_decay \ # --lr=0.1 \ # --num_epochs=200 \ # --model_save_dir=output/ \ # --l2_decay=1e-4 \ # --use_mixup=True \ # --use_label_smoothing=True \ # --label_smoothing_epsilon=0.1 #ResNet200_vd #python train.py # --model=ResNet200_vd \ # --batch_size=256 \ # --total_images=1281167 \ # --image_shape=3,224,224 \ # --class_dim=1000 \ # --lr_strategy=cosine_decay \ # --lr=0.1 \ # --num_epochs=200 \ # --model_save_dir=output/ \ # --l2_decay=1e-4 \ # --use_mixup=True \ # --use_label_smoothing=True \ # --label_smoothing_epsilon=0.1 #ResNeXt50_32x4d #python train.py \ # --model=ResNeXt50_32x4d \ # --batch_size=256 \ # --total_images=1281167 \ # --image_shape=3,224,224 \ # --class_dim=1000 \ # --lr_strategy=piecewise_decay \ # --lr=0.1 \ # --num_epochs=120 \ # --model_save_dir=output/ \ # --l2_decay=1e-4 #ResNeXt50_vd_32x4d #python train.py \ # --model=ResNeXt50_vd_32x4d \ # --batch_size=256 \ # --total_images=1281167 \ # --image_shape=3,224,224 \ # --class_dim=1000 \ # --lr_strategy=cosine_decay \ # --lr=0.1 \ # --num_epochs=200 \ # --model_save_dir=output/ \ # --l2_decay=1e-4 \ # --use_mixup=True \ # --use_label_smoothing=True \ # --label_smoothing_epsilon=0.1 \ #ResNeXt50_64x4d #python train.py \ # --model=ResNeXt50_64x4d \ # --batch_size=256 \ # --total_images=1281167 \ # --image_shape=3,224,224 \ # --class_dim=1000 \ # --lr_strategy=piecewise_decay \ # --lr=0.1 \ # --num_epochs=120 \ # --model_save_dir=output/ \ # --l2_decay=1e-4 #ResNeXt50_vd_64x4d #python train.py \ # --model=ResNeXt50_vd_64x4d \ # --batch_size=256 \ # --total_images=1281167 \ # --image_shape=3,224,224 \ # --class_dim=1000 \ # --lr_strategy=cosine_decay \ # --lr=0.1 \ # --num_epochs=200 \ # --model_save_dir=output/ \ # --l2_decay=1e-4 \ # --use_mixup=True \ # --use_label_smoothing=True \ # --label_smoothing_epsilon=0.1 \ #ResNeXt101_32x4d #python train.py \ # --model=ResNeXt101_32x4d \ # --batch_size=256 \ # --total_images=1281167 \ # --image_shape=3,224,224 \ # --class_dim=1000 \ # --lr_strategy=piecewise_decay \ # --lr=0.1 \ # --num_epochs=120 \ # --model_save_dir=output/ \ # --l2_decay=1e-4 #ResNeXt101_64x4d #python train.py \ # --model=ResNeXt101_64x4d \ # --batch_size=256 \ # --total_images=1281167 \ # --image_shape=3,224,224 \ # --class_dim=1000 \ # --lr_strategy=piecewise_decay \ # --lr=0.1 \ # --num_epochs=120 \ # --model_save_dir=output/ \ # --l2_decay=15e-5 #ResNeXt101_vd_64x4d # python train.py \ # --model=ResNeXt101_vd_64x4d \ # --batch_size=256 \ # --total_images=1281167 \ # --image_shape=3,224,224 \ # --class_dim=1000 \ # --lr_strategy=cosine_decay \ # --lr=0.1 \ # --num_epochs=200 \ # --model_save_dir=output/ \ # --l2_decay=1e-4 \ # --use_mixup=True \ # --use_label_smoothing=True \ # --label_smoothing_epsilon=0.1 # ResNeXt152_32x4d # python train.py \ # --model=ResNeXt152_32x4d \ # --batch_size=256 \ # --total_images=1281167 \ # --image_shape=3,224,224 \ # --class_dim=1000 \ # --lr_strategy=piecewise_decay \ # --lr=0.1 \ # --num_epochs=120 \ # --model_save_dir=output/ \ # --l2_decay=1e-4 #ResNeXt152_64x4d #python train.py \ # --model=ResNeXt152_64x4d \ # --batch_size=256 \ # --total_images=1281167 \ # --image_shape=3,224,224 \ # --class_dim=1000 \ # --lr_strategy=piecewise_decay \ # --lr=0.1 \ # --num_epochs=120 \ # --model_save_dir=output/ \ # --l2_decay=18e-5 # DenseNet121 # python train.py \ # --model=DenseNet121 \ # --batch_size=256 \ # --total_images=1281167 \ # --image_shape=3,224,224 \ # --class_dim=1000 \ # --lr_strategy=piecewise_decay \ # --lr=0.1 \ # --num_epochs=120 \ # --model_save_dir=output/ \ # --l2_decay=1e-4 # DenseNet161 # python train.py \ # --model=DenseNet161 \ # --batch_size=256 \ # --total_images=1281167 \ # --image_shape=3,224,224 \ # --class_dim=1000 \ # --lr_strategy=piecewise_decay \ # --lr=0.1 \ # --num_epochs=120 \ # --model_save_dir=output/ \ # --l2_decay=1e-4 # DenseNet169 # python train.py \ # --model=DenseNet169 \ # --batch_size=256 \ # --total_images=1281167 \ # --image_shape=3,224,224 \ # --class_dim=1000 \ # --lr_strategy=piecewise_decay \ # --lr=0.1 \ # --num_epochs=120 \ # --model_save_dir=output/ \ # --l2_decay=1e-4 # DenseNet201 # python train.py \ # --model=DenseNet201 \ # --batch_size=256 \ # --total_images=1281167 \ # --image_shape=3,224,224 \ # --class_dim=1000 \ # --lr_strategy=piecewise_decay \ # --lr=0.1 \ # --num_epochs=120 \ # --model_save_dir=output/ \ # --l2_decay=1e-4 # DenseNet264 # python train.py \ # --model=DenseNet264 \ # --batch_size=256 \ # --total_images=1281167 \ # --image_shape=3,224,224 \ # --class_dim=1000 \ # --lr_strategy=piecewise_decay \ # --lr=0.1 \ # --num_epochs=120 \ # --model_save_dir=output/ \ # --l2_decay=1e-4 #SE_ResNeXt50_32x4d: #python train.py \ # --model=SE_ResNeXt50_32x4d \ # --batch_size=400 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --lr_strategy=cosine_decay \ # --model_save_dir=output/ \ # --lr=0.1 \ # --num_epochs=200 \ # --l2_decay=1.2e-4 #SE_ResNeXt101_32x4d: #python train.py \ # --model=SE_ResNeXt101_32x4d \ # --batch_size=400 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --lr_strategy=cosine_decay \ # --model_save_dir=output/ \ # --lr=0.1 \ # --num_epochs=200 \ # --l2_decay=1.5e-5 # SE_154 # python train.py \ # --model=SE_154_vd \ # --batch_size=256 \ # --total_images=1281167 \ # --image_shape=3,224,224 \ # --class_dim=1000 \ # --lr_strategy=cosine_decay \ # --lr=0.1 \ # --num_epochs=200 \ # --model_save_dir=output/ \ # --l2_decay=1e-4 \ # --use_mixup=True \ # --use_label_smoothing=True \ # --label_smoothing_epsilon=0.1 \ #GoogleNet: #python train.py \ # --model=GoogleNet \ # --batch_size=256 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --model_save_dir=output/ \ # --lr_strategy=cosine_decay \ # --lr=0.01 \ # --num_epochs=200 \ # --l2_decay=1e-4 # Xception_41 # python train.py \ # --model=Xception_41 \ # --batch_size=256 \ # --total_images=1281167 \ # --image_shape=3,224,224 \ # --class_dim=1000 \ # --lr_strategy=cosine_decay \ # --lr=0.045 \ # --num_epochs=120 \ # --model_save_dir=output/ \ # --l2_decay=1e-4 \ # --resize_short_size=320 # InceptionV4 # python train.py # --model=InceptionV4 \ # --batch_size=256 \ # --total_images=1281167 \ # --image_shape=3,299,299 \ # --class_dim=1000 \ # --lr_strategy=cosine_decay \ # --lr=0.045 \ # --num_epochs=200 \ # --model_save_dir=output/ \ # --l2_decay=1e-4 \ # --use_mixup=True \ # --resize_short_size=320 \ # --use_label_smoothing=True \ # --label_smoothing_epsilon=0.1 \ #DarkNet53 python train.py # --model=DarkNet53 \ # --batch_size=256 \ # --total_images=1281167 \ # --image_shape=3,256,256 \ # --class_dim=1000 \ # --lr_strategy=cosine_decay \ # --lr=0.1 \ # --num_epochs=200 \ # --model_save_dir=output/ \ # --l2_decay=1e-4 \ # --use_mixup=True \ # --resize_short_size=256 \ # --use_label_smoothing=True \ # --label_smoothing_epsilon=0.1 \ #ResNet50 nGraph: # Training: #OMP_NUM_THREADS=`nproc` FLAGS_use_ngraph=true python train.py \ # --model=ResNet50 \ # --batch_size=128 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --lr=0.001 \ # --num_epochs=120 \ # --model_save_dir=output/ \ # --lr_strategy=adam \ # --use_gpu=False # Inference: #OMP_NUM_THREADS=`nproc` FLAGS_use_ngraph=true python infer.py \ # --use_gpu=false \ # --model=ResNet50 \ # --pretrained_model=ResNet50_pretrained