# 图像分类以及模型库 --- ## 内容 - [简介](#简介) - [快速开始](#快速开始) - [安装说明](#安装说明) - [数据准备](#数据准备) - [模型训练](#模型训练) - [参数微调](#参数微调) - [模型评估](#模型评估) - [模型预测](#模型预测) - [进阶使用](#进阶使用) - [混合精度训练](#混合精度训练) - [CE测试](#ce测试) - [已发布模型及其性能](#已发布模型及其性能) - [FAQ](#faq) - [参考文献](#参考文献) - [版本更新](#版本更新) - [如何贡献代码](#如何贡献代码) - [反馈](#反馈) ## 简介 图像分类是计算机视觉的重要领域,它的目标是将图像分类到预定义的标签。近期,许多研究者提出很多不同种类的神经网络,并且极大的提升了分类算法的性能。本页将介绍如何使用PaddlePaddle进行图像分类。 ## 快速开始 ### 安装说明 在当前目录下运行样例代码需要python 2.7及以上版本,PadddlePaddle Fluid v1.5或以上的版本。如果你的运行环境中的PaddlePaddle低于此版本,请根据 [installation document](http://paddlepaddle.org/documentation/docs/zh/1.4/beginners_guide/install/index_cn.html) 中的说明来更新PaddlePaddle。 ### 数据准备 下面给出了ImageNet分类任务的样例,首先,通过如下的方式进行数据的准备: ``` cd data/ILSVRC2012/ sh download_imagenet2012.sh ``` 在```download_imagenet2012.sh```脚本中,通过下面三步来准备数据: **步骤一:** 首先在```image-net.org```网站上完成注册,用于获得一对```Username```和```AccessKey```。 **步骤二:** 从ImageNet官网下载ImageNet-2012的图像数据。训练以及验证数据集会分别被下载到"train" 和 "val" 目录中。请注意,ImaegNet数据的大小超过40GB,下载非常耗时;已经自行下载ImageNet的用户可以直接将数据组织放置到```data/ILSVRC2012```。 **步骤三:** 下载训练与验证集合对应的标签文件。下面两个文件分别包含了训练集合与验证集合中图像的标签: * train_list.txt: ImageNet-2012训练集合的标签文件,每一行采用"空格"分隔图像路径与标注,例如: ``` train/n02483708/n02483708_2436.jpeg 369 ``` * val_list.txt: ImageNet-2012验证集合的标签文件,每一行采用"空格"分隔图像路径与标注,例如: ``` val/ILSVRC2012_val_00000001.jpeg 65 ``` 注意:可能需要根据本地环境调整reader.py相关路径来正确读取数据。 ### 模型训练 数据准备完毕后,可以通过如下的方式启动训练: ``` python train.py \ --model=SE_ResNeXt50_32x4d \ --batch_size=32 \ --total_images=1281167 \ --class_dim=1000 \ --image_shape=3,224,224 \ --model_save_dir=output/ \ --with_inplace=True \ --lr_strategy=piecewise_decay \ --lr=0.1 ``` **参数说明:** * **model**: 模型名称, 默认值: "SE_ResNeXt50_32x4d" * **num_epochs**: 训练回合数,默认值: 120 * **batch_size**: 批大小,默认值: 256 * **use_gpu**: 是否在GPU上运行,默认值: True * **total_images**: 图片数,ImageNet2012默认值: 1281167. * **class_dim**: 类别数,默认值: 1000 * **image_shape**: 图片大小,默认值: "3,224,224" * **model_save_dir**: 模型存储路径,默认值: "output/" * **with_inplace**: 是否开启inplace显存优化,默认值: True * **lr_strategy**: 学习率变化策略,默认值: "piecewise_decay" * **lr**: 初始学习率,默认值: 0.1 * **pretrained_model**: 预训练模型路径,默认值: None * **checkpoint**: 用于继续训练的检查点(指定具体模型存储路径,如"output/SE_ResNeXt50_32x4d/100/"),默认值: None * **fp16**: 是否开启混合精度训练,默认值: False * **scale_loss**: 调整混合训练的loss scale值,默认值: 1.0 * **l2_decay**: l2_decay值,默认值: 1e-4 * **momentum_rate**: momentum_rate值,默认值: 0.9 * **use_label_smoothing**: 是否对数据进行label smoothing处理,默认值:False * **label_smoothing_epsilon**: label_smoothing的epsilon值,默认值:0.2 * **lower_scale**: 数据随机裁剪处理时的lower scale值, upper scale值固定为1.0,默认值:0.08 * **lower_ratio**: 数据随机裁剪处理时的lower ratio值,默认值:3./4. * **upper_ration**: 数据随机裁剪处理时的upper ratio值,默认值:4./3. * **resize_short_size**: 指定数据处理时改变图像大小的短边值,默认值: 256 * **use_mixup**: 是否对数据进行mixup处理,默认值:False * **mixup_alpha**: 指定mixup处理时的alpha值,默认值: 0.2 * **is_distill**: 是否进行蒸馏训练,默认值: False **在```run.sh```中有用于训练的脚本.** **数据读取器说明:** 数据读取器定义在PIL:```reader.py```和CV2:```reader_cv2.py```文件中,现在默认基于cv2的数据读取器, 在[训练阶段](#模型训练), 默认采用的增广方式是随机裁剪与水平翻转, 而在[模型评估](#模型评估)与[模型预测](#模型预测)阶段用的默认方式是中心裁剪。当前支持的数据增广方式有: * 旋转 * 颜色抖动(cv2暂未实现) * 随机裁剪 * 中心裁剪 * 长宽调整 * 水平翻转 ### 参数微调 参数微调是指在特定任务上微调已训练模型的参数。可以下载[已有模型及其性能](#已有模型及其性能)并且设置```path_to_pretrain_model```为模型所在路径,微调一个模型可以采用如下的命令: ``` python train.py \ --pretrained_model=${path_to_pretrain_model} ``` 注意:根据具体模型和任务添加并调整其他参数 ### 模型评估 模型评估是指对训练完毕的模型评估各类性能指标。可以下载[已有模型及其性能](#已有模型及其性能)并且设置```path_to_pretrain_model```为模型所在路径。运行如下的命令,可以获得模型top-1/top-5精度: ``` python eval.py \ --pretrained_model=${path_to_pretrain_model} ``` 注意:根据具体模型和任务添加并调整其他参数 ### 模型预测 模型预测可以获取一个模型的预测分数或者图像的特征,可以下载[已有模型及其性能](#已有模型及其性能)并且设置```path_to_pretrain_model```为模型所在路径。运行如下的命令获得预测分数,: ``` python infer.py \ --pretrained_model=${path_to_pretrain_model} ``` 注意:根据具体模型和任务添加并调整其他参数 ##进阶使用 ### 混合精度训练 可以通过开启`--fp16=True`启动混合精度训练,这样训练过程会使用float16数据,并输出float32的模型参数("master"参数)。您可能需要同时传入`--scale_loss`来解决fp16训练的精度问题,通常传入`--scale_loss=8.0`即可。 ### CE测试 注意:CE相关代码仅用于内部测试,enable_ce默认设置False。 ## 已发布模型及其性能 表格中列出了在models目录下目前支持的图像分类模型,并且给出了已完成训练的模型在ImageNet-2012验证集合上的top-1/top-5精度,以及Paddle Fluid和Paddle TensorRT基于动态链接库的预测时间(测 试GPU型号为Tesla P4)。由于Paddle TensorRT对ShuffleNetV2_swish使用的激活函数swish,MobileNetV2使用的激活函数relu6不支持,因此预测加速不明显。可以通过点击相应模型的名称下载对应的预训练模型。 - 注意 - 1:ResNet50_vd_v2是ResNet50_vd蒸馏版本。 - 2:InceptionV4和Xception采用的输入图像的分辨率为299x299,DarkNet53为256x256,Fix_ResNeXt101_32x48d_wsl为320x320,其余模型使用的分辨率均为224x224。在预测时,DarkNet53与Fix_ResNeXt101_32x48d_wsl系列网络resize_short_size与输入的图像分辨率的宽或高相同,InceptionV4和Xception网络resize_short_size为320,其余网络resize_short_size均为256。 - 3:调用动态链接库预测时需要将训练模型转换为二进制模型 ```python infer.py --save_inference=True``` - 4: ResNeXt101_wsl系列的预训练模型转自pytorch模型,详情请移步[RESNEXT WSL](https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/)。 ### AlexNet |model | top-1/top-5 accuracy(CV2) | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) | |- |:-: |:-: |:-: | |[AlexNet](http://paddle-imagenet-models-name.bj.bcebos.com/AlexNet_pretrained.tar) | 56.72%/79.17% | 3.083 | 2.728 | ### SqueezeNet |model | top-1/top-5 accuracy(CV2) | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) | |- |:-: |:-: |:-: | |[SqueezeNet1_0](https://paddle-imagenet-models-name.bj.bcebos.com/SqueezeNet1_0_pretrained.tar) | 59.60%/81.66% | 2.740 | 1.688 | |[SqueezeNet1_1](https://paddle-imagenet-models-name.bj.bcebos.com/SqueezeNet1_1_pretrained.tar) | 60.08%/81.85% | 2.751 | 1.270 | ### VGG |model | top-1/top-5 accuracy(CV2) | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) | |- |:-: |:-: |:-: | |[VGG11](https://paddle-imagenet-models-name.bj.bcebos.com/VGG11_pretrained.tar) | 69.28%/89.09% | 8.223 | 6.821 | |[VGG13](https://paddle-imagenet-models-name.bj.bcebos.com/VGG13_pretrained.tar) | 70.02%/89.42% | 9.512 | 7.783 | |[VGG16](https://paddle-imagenet-models-name.bj.bcebos.com/VGG16_pretrained.tar) | 72.00%/90.69% | 11.315 | 9.067 | |[VGG19](https://paddle-imagenet-models-name.bj.bcebos.com/VGG19_pretrained.tar) | 72.56%/90.93% | 13.096 | 10.388 | ### MobileNet |model | top-1/top-5 accuracy(CV2) | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) | |- |:-: |:-: |:-: | |[MobileNetV1](http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar) | 70.99%/89.68% | 2.609 |1.615 | |[MobileNetV2_x0_25](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_25_pretrained.tar) | 53.21%/76.52% | 4.267 | 3.777 | |[MobileNetV2_x0_5](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_5_pretrained.tar) | 65.03%/85.72% | 4.514 | 4.150 | |[MobileNetV2_x1_0](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar) | 72.15%/90.65% | 4.546 | 5.278 | |[MobileNetV2_x1_5](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x1_5_pretrained.tar) | 74.12%/91.67% | 5.235 | 6.909 | |[MobileNetV2_x2_0](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x2_0_pretrained.tar) | 75.23%/92.58% | 6.680 | 7.658 | ### ShuffleNet |model | top-1/top-5 accuracy(CV2) | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) | |- |:-: |:-: |:-: | |[ShuffleNetV2_x0_25](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_25_pretrained.tar) | 49.90%/73.79% | 5.956 | 2.961 | |[ShuffleNetV2_x0_33](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_33_pretrained.tar) | 53.73%/77.05% | 5.896 | 2.941 | |[ShuffleNetV2_x0_5](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_5_pretrained.tar) | 60.32%/82.26% | 6.048 | 3.088 | |[ShuffleNetV2_x1_0](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x1_0_pretrained.tar) | 68.80%/88.45% | 6.101 | 3.616 | |[ShuffleNetV2_x1_5](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x1_5_pretrained.tar) | 71.63%/90.15% | 6.113 | 3.699 | |[ShuffleNetV2_x2_0](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x2_0_pretrained.tar) | 73.15%/91.20% | 6.430 | 4.553 | |[ShuffleNetV2_x1_0_swish](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_pretrained.tar) | 70.03%/89.17% | 6.078 | 6.282 | ### ResNet |model | top-1/top-5 accuracy(CV2) | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) | |- |:-: |:-: |:-: | |[ResNet18](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_pretrained.tar) | 70.98%/89.92% | 3.456 | 2.484 | |[ResNet34](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar) | 74.57%/92.14% | 5.668 | 3.767 | |[ResNet50](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar) | 76.50%/93.00% | 8.787 | 5.434 | |[ResNet50_vc](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vc_pretrained.tar) |78.35%/94.03% | 9.013 | 5.463 | |[ResNet50_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar) | 79.12%/94.44% | 9.058 | 5.510 | |[ResNet50_vd_v2](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_v2_pretrained.tar) | 79.84%/94.93% | 9.058 | 5.510 | |[ResNet101](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar) | 77.56%/93.64% | 15.447 | 8.779 | |[ResNet101_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar) | 80.17%/94.97% | 15.685 | 8.878 | |[ResNet152](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_pretrained.tar) | 78.26%/93.96% | 21.816 | 12.148 | |[ResNet152_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_vd_pretrained.tar) | 80.59%/95.30% | 22.041 | 12.259 | |[ResNet200_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet200_vd_pretrained.tar) | 80.93%/95.33% | 28.015 | 15.278 | ### ResNeXt |model | top-1/top-5 accuracy(CV2) | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) | |- |:-: |:-: |:-: | |[ResNeXt50_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_32x4d_pretrained.tar) | 77.75%/93.82% | 12.863 | 9.837 | |[ResNeXt50_vd_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_vd_32x4d_pretrained.tar) | 79.56%/94.62% | 13.673 | 9.991 | |[ResNeXt50_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_64x4d_pretrained.tar) | 78.43%/94.13% | 28.162 | 18.271 | |[ResNeXt50_vd_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_vd_64x4d_pretrained.tar) | 80.12%/94.86% | 20.888 | 17.687 | |[ResNeXt101_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x4d_pretrained.tar) | 78.65%/94.19% | 24.154 | 21.387 | |[ResNeXt101_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_64x4d_pretrained.tar) | 78.43%/94.13% | 41.073 | 38.736 | |[ResNeXt101_vd_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_64x4d_pretrained.tar) | 80.78%/95.20% | 42.277 | 40.929 | |[ResNeXt152_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_32x4d_pretrained.tar) | 78.98%/94.33% | 37.007 | 31.301 | |[ResNeXt152_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_64x4d_pretrained.tar) | 79.51%/94.71% | 58.966 | 57.267 | ### DenseNet |model | top-1/top-5 accuracy(CV2) | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) | |- |:-: |:-: |:-: | |[DenseNet121](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet121_pretrained.tar) | 75.66%/92.58% | 12.437 | 5.813 | |[DenseNet161](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet161_pretrained.tar) | 78.57%/94.14% | 27.717 | 12.861 | |[DenseNet169](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet169_pretrained.tar) | 76.81%/93.31% | 18.941 | 8.146 | |[DenseNet201](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet201_pretrained.tar) | 77.63%/93.66% | 26.583 | 10.549 | |[DenseNet264](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet264_pretrained.tar) | 77.96%/93.85% | 41.495 | 15.574 | ### SENet |model | top-1/top-5 accuracy(CV2) | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) | |- |:-: |:-: |:-: | |[SE_ResNeXt50_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt50_32x4d_pretrained.tar) | 78.44%/93.96% | 14.916 | 12.126 | |[SE_ResNeXt101_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt101_32x4d_pretrained.tar) | 79.12%/94.20% | 30.085 | 24.110 | |[SENet154_vd](https://paddle-imagenet-models-name.bj.bcebos.com/SE154_vd_pretrained.tar) | 81.40%/95.48% | 71.892 | 64.855 | ### Inception |model | top-1/top-5 accuracy(CV2) | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) | |- |:-: |:-: |:-: | |[GoogLeNet](https://paddle-imagenet-models-name.bj.bcebos.com/GoogleNet_pretrained.tar) | 70.70%/89.66% | 6.528 | 3.076 | |[Xception_41](https://paddle-imagenet-models-name.bj.bcebos.com/Xception41_pretrained.tar) | 79.30%/94.53% | 13.757 | 10.831 | |[InceptionV4](https://paddle-imagenet-models-name.bj.bcebos.com/InceptionV4_pretrained.tar) | 80.77%/95.26% | 32.413 | 18.154 | ### DarkNet |model | top-1/top-5 accuracy(CV2) | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) | |- |:-: |:-: |:-: | |[DarkNet53](https://paddle-imagenet-models-name.bj.bcebos.com/DarkNet53_ImageNet1k_pretrained.tar) | 78.04%/94.05% | 11.969 | 7.153 | ### ResNeXt101_wsl |model | top-1/top-5 accuracy(CV2) | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) | |- |:-: |:-: |:-: | |[ResNeXt101_32x8d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x8d_wsl_pretrained.tar) | 82.55%/96.74% | 33.310 | 27.648 | |[ResNeXt101_32x16d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x16d_wsl_pretrained.tar) | 84.24%/97.26% | 54.320 | 46.064 | |[ResNeXt101_32x32d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x32d_wsl_pretrained.tar) | 84.97%/97.59% | 97.734 | 87.961 | |[ResNeXt101_32x48d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x48d_wsl_pretrained.tar) | 85.37%/97.69% | 161.722 | | |[Fix_ResNeXt101_32x48d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/Fix_ResNeXt101_32x48d_wsl_pretrained.tar) | 86.26%/97.97% | 236.091 | | ## FAQ **Q:** 加载预训练模型报错,Enforce failed. Expected x_dims[1] == labels_dims[1], but received x_dims[1]:1000 != labels_dims[1]:6. **A:** 维度对不上,删掉预训练参数中的FC ## 参考文献 - AlexNet: [imagenet-classification-with-deep-convolutional-neural-networks](https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf), Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton - ResNet: [Deep Residual Learning for Image Recognitio](https://arxiv.org/abs/1512.03385), Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun - ResNeXt: [Aggregated Residual Transformations for Deep Neural Networks](https://arxiv.org/abs/1611.05431), Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, Kaiming He - SeResNeXt: [Squeeze-and-Excitation Networks](https://arxiv.org/pdf/1709.01507.pdf)Jie Hu, Li Shen, Samuel Albanie - ShuffleNetV1: [ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices](https://arxiv.org/abs/1707.01083), Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, Jian Sun - ShuffleNetV2: [ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design](https://arxiv.org/abs/1807.11164), Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, Jian Sun - MobileNetV1: [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861), Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam - MobileNetV2: [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/pdf/1801.04381v4.pdf), Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen - VGG: [Very Deep Convolutional Networks for Large-scale Image Recognition](https://arxiv.org/pdf/1409.1556), Karen Simonyan, Andrew Zisserman - GoogLeNet: [Going Deeper with Convolutions](https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf), Christian Szegedy1, Wei Liu2, Yangqing Jia - Xception: [Xception: Deep Learning with Depthwise Separable Convolutions](https://arxiv.org/abs/1610.02357), Franc ̧ois Chollet - InceptionV4: [Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning](https://arxiv.org/abs/1602.07261), Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi - DarkNet: [YOLOv3: An Incremental Improvement](https://pjreddie.com/media/files/papers/YOLOv3.pdf), Joseph Redmon, Ali Farhadi - DenseNet: [Densely Connected Convolutional Networks](https://arxiv.org/abs/1608.06993), Gao Huang, Zhuang Liu, Laurens van der Maaten - SqueezeNet: [SQUEEZENET: ALEXNET-LEVEL ACCURACY WITH 50X FEWER PARAMETERS AND <0.5MB MODEL SIZE](https://arxiv.org/abs/1602.07360), Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, Kurt Keutzer - ResNeXt101_wsl: [Exploring the Limits of Weakly Supervised Pretraining](https://arxiv.org/abs/1805.00932), Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He, Manohar Paluri, Yixuan Li, Ashwin Bharambe, Laurens van der Maaten - Fix_ResNeXt101_wsl: [Fixing the train-test resolution discrepancy](https://arxiv.org/abs/1906.06423), Hugo Touvron, Andrea Vedaldi, Matthijs Douze, Herve ́ Je ́gou ## 版本更新 - 2018/12/03 **Stage1**: 更新AlexNet,ResNet50,ResNet101,MobileNetV1 - 2018/12/23 **Stage2**: 更新VGG系列 SeResNeXt50_32x4d,SeResNeXt101_32x4d,ResNet152 - 2019/01/31 更新MobileNetV2_x1_0 - 2019/04/01 **Stage3**: 更新ResNet18,ResNet34,GoogLeNet,ShuffleNetV2 - 2019/06/12 **Stage4**: 更新ResNet50_vc,ResNet50_vd,ResNet101_vd,ResNet152_vd,ResNet200_vd,SE154_vd InceptionV4,ResNeXt101_64x4d,ResNeXt101_vd_64x4d - 2019/06/22 更新ResNet50_vd_v2 - 2019/07/02 **Stage5**: 更新MobileNetV2_x0_5, ResNeXt50_32x4d, ResNeXt50_64x4d, Xception_41, ResNet101_vd - 2019/07/19 **Stage6**: 更新ShuffleNetV2_x0_25, ShuffleNetV2_x0_33, ShuffleNetV2_x0_5, ShuffleNetV2_x1_0, ShuffleNetV2_x1_5, ShuffleNetV2_x2_0, MobileNetV2_x0_25, MobileNetV2_x1_5, MobileNetV2_x2_0, ResNeXt50_vd_64x4d, ResNeXt101_32x4d, ResNeXt152_32x4d - 2019/08/01 **Stage7**: 更新DarkNet53, DenseNet121. Densenet161, DenseNet169, DenseNet201, DenseNet264, SqueezeNet1_0, SqueezeNet1_1, ResNeXt50_vd_32x4d, ResNeXt152_64x4d, ResNeXt101_32x8d_wsl, ResNeXt101_32x16d_wsl, ResNeXt101_32x32d_wsl, ResNeXt101_32x48d_wsl, Fix_ResNeXt101_32x48d_wsl ## 如何贡献代码 如果你可以修复某个issue或者增加一个新功能,欢迎给我们提交PR。如果对应的PR被接受了,我们将根据贡献的质量和难度进行打分(0-5分,越高越好)。如果你累计获得了10分,可以联系我们获得面试机会或者为你写推荐信。