import os import time import sys import paddle.fluid as fluid import math class TSN_ResNet(): def __init__(self, layers=50, seg_num=7): self.layers = layers self.seg_num = seg_num def conv_bn_layer(self, input, num_filters, filter_size, stride=1, groups=1, act=None): conv = fluid.layers.conv2d( input=input, num_filters=num_filters, filter_size=filter_size, stride=stride, padding=(filter_size - 1) // 2, groups=groups, act=None, bias_attr=False) return fluid.layers.batch_norm(input=conv, act=act) def shortcut(self, input, ch_out, stride): ch_in = input.shape[1] if ch_in != ch_out or stride != 1: return self.conv_bn_layer(input, ch_out, 1, stride) else: return input def bottleneck_block(self, input, num_filters, stride): conv0 = self.conv_bn_layer( input=input, num_filters=num_filters, filter_size=1, act='relu') conv1 = self.conv_bn_layer( input=conv0, num_filters=num_filters, filter_size=3, stride=stride, act='relu') conv2 = self.conv_bn_layer( input=conv1, num_filters=num_filters * 4, filter_size=1, act=None) short = self.shortcut(input, num_filters * 4, stride) return fluid.layers.elementwise_add(x=short, y=conv2, act='relu') def net(self, input, class_dim=101): layers = self.layers seg_num = self.seg_num supported_layers = [50, 101, 152] if layers not in supported_layers: print("supported layers are", supported_layers, \ "but input layer is ", layers) exit() # reshape input channels = input.shape[2] short_size = input.shape[3] input = fluid.layers.reshape( x=input, shape=[-1, channels, short_size, short_size]) if layers == 50: depth = [3, 4, 6, 3] elif layers == 101: depth = [3, 4, 23, 3] elif layers == 152: depth = [3, 8, 36, 3] num_filters = [64, 128, 256, 512] conv = self.conv_bn_layer( input=input, num_filters=64, filter_size=7, stride=2, act='relu') conv = fluid.layers.pool2d( input=conv, pool_size=3, pool_stride=2, pool_padding=1, pool_type='max') for block in range(len(depth)): for i in range(depth[block]): conv = self.bottleneck_block( input=conv, num_filters=num_filters[block], stride=2 if i == 0 and block != 0 else 1) pool = fluid.layers.pool2d( input=conv, pool_size=7, pool_type='avg', global_pooling=True) feature = fluid.layers.reshape( x=pool, shape=[-1, seg_num, pool.shape[1]]) out = fluid.layers.reduce_mean(feature, dim=1) stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0) out = fluid.layers.fc(input=out, size=class_dim, act='softmax', param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Uniform(-stdv, stdv))) return out