"""Trainer for DeepSpeech2 model.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import functools import paddle.v2 as paddle from models.model import DeepSpeech2Model from data_utils.data import DataGenerator from utils.utility import add_arguments, print_arguments parser = argparse.ArgumentParser(description=__doc__) add_arg = functools.partial(add_arguments, argparser=parser) # yapf: disable add_arg('batch_size', int, 256, "Minibatch size.") add_arg('trainer_count', int, 8, "# of Trainers (CPUs or GPUs).") add_arg('num_passes', int, 200, "# of training epochs.") add_arg('num_proc_data', int, 12, "# of CPUs for data preprocessing.") add_arg('num_conv_layers', int, 2, "# of convolution layers.") add_arg('num_rnn_layers', int, 3, "# of recurrent layers.") add_arg('rnn_layer_size', int, 2048, "# of recurrent cells per layer.") add_arg('num_iter_print', int, 100, "Every # iterations for printing " "train cost.") add_arg('learning_rate', float, 5e-4, "Learning rate.") add_arg('max_duration', float, 27.0, "Longest audio duration allowed.") add_arg('min_duration', float, 0.0, "Shortest audio duration allowed.") add_arg('use_sortagrad', bool, True, "Use SortaGrad or not.") add_arg('use_gpu', bool, True, "Use GPU or not.") add_arg('use_gru', bool, False, "Use GRUs instead of simple RNNs.") add_arg('is_local', bool, True, "Use pserver or not.") add_arg('share_rnn_weights',bool, True, "Share input-hidden weights across " "bi-directional RNNs. Not for GRU.") add_arg('train_manifest', str, 'data/librispeech/manifest.train', "Filepath of train manifest.") add_arg('dev_manifest', str, 'data/librispeech/manifest.dev-clean', "Filepath of validation manifest.") add_arg('mean_std_path', str, 'data/librispeech/mean_std.npz', "Filepath of normalizer's mean & std.") add_arg('vocab_path', str, 'data/librispeech/eng_vocab.txt', "Filepath of vocabulary.") add_arg('init_model_path', str, None, "If None, the training starts from scratch, " "otherwise, it resumes from the pre-trained model.") add_arg('output_model_dir', str, "./checkpoints", "Directory for saving checkpoints.") add_arg('augment_conf_path',str, 'conf/augmentation.config', "Filepath of augmentation configuration file (json-format).") add_arg('specgram_type', str, 'linear', "Audio feature type. Options: linear, mfcc.", choices=['linear', 'mfcc']) add_arg('shuffle_method', str, 'batch_shuffle_clipped', "Shuffle method.", choices=['instance_shuffle', 'batch_shuffle', 'batch_shuffle_clipped']) # yapf: disable args = parser.parse_args() def train(): """DeepSpeech2 training.""" train_generator = DataGenerator( vocab_filepath=args.vocab_path, mean_std_filepath=args.mean_std_path, augmentation_config=open(args.augment_conf_path, 'r').read(), max_duration=args.max_duration, min_duration=args.min_duration, specgram_type=args.specgram_type, num_threads=args.num_proc_data) dev_generator = DataGenerator( vocab_filepath=args.vocab_path, mean_std_filepath=args.mean_std_path, augmentation_config="{}", specgram_type=args.specgram_type, num_threads=args.num_proc_data) train_batch_reader = train_generator.batch_reader_creator( manifest_path=args.train_manifest, batch_size=args.batch_size, min_batch_size=args.trainer_count, sortagrad=args.use_sortagrad if args.init_model_path is None else False, shuffle_method=args.shuffle_method) dev_batch_reader = dev_generator.batch_reader_creator( manifest_path=args.dev_manifest, batch_size=args.batch_size, min_batch_size=1, # must be 1, but will have errors. sortagrad=False, shuffle_method=None) ds2_model = DeepSpeech2Model( vocab_size=train_generator.vocab_size, num_conv_layers=args.num_conv_layers, num_rnn_layers=args.num_rnn_layers, rnn_layer_size=args.rnn_layer_size, use_gru=args.use_gru, pretrained_model_path=args.init_model_path, share_rnn_weights=args.share_rnn_weights) ds2_model.train( train_batch_reader=train_batch_reader, dev_batch_reader=dev_batch_reader, feeding_dict=train_generator.feeding, learning_rate=args.learning_rate, gradient_clipping=400, num_passes=args.num_passes, num_iterations_print=args.num_iter_print, output_model_dir=args.output_model_dir, is_local=args.is_local) def main(): print_arguments(args) paddle.init(use_gpu=args.use_gpu, trainer_count=args.trainer_count) train() if __name__ == '__main__': main()