{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 1. UIE模型简介\n", "\n", "[UIE(Universal Information Extraction)](https://arxiv.org/pdf/2203.12277.pdf):Yaojie Lu等人在ACL-2022中提出了通用信息抽取统一框架UIE。该框架实现了实体抽取、关系抽取、事件抽取、情感分析等任务的统一建模,并使得不同任务间具备良好的迁移和泛化能力。为了方便大家使用UIE的强大能力,PaddleNLP借鉴该论文的方法,基于ERNIE 3.0知识增强预训练模型,训练并开源了首个中文通用信息抽取模型UIE。该模型可以支持不限定行业领域和抽取目标的关键信息抽取,实现零样本快速冷启动,并具备优秀的小样本微调能力,快速适配特定的抽取目标。\n", "\n", "
金融 | 医疗 | 互联网\n", " | ||||
---|---|---|---|---|---|---|
0-shot | 5-shot | 0-shot | 5-shot | 0-shot | 5-shot\n", " | |
uie-base (12L768H) | 46.43 | 70.92 | 71.83 | 85.72 | 78.33 | 81.86\n", " |
uie-medium (6L768H) | 41.11 | 64.53 | 65.40 | 75.72 | 78.32 | 79.68\n", " |
uie-mini (6L384H) | 37.04 | 64.65 | 60.50 | 78.36 | 72.09 | 76.38\n", " |
uie-micro (4L384H) | 37.53 | 62.11 | 57.04 | 75.92 | 66.00 | 70.22\n", " |
uie-nano (4L312H) | 38.94 | 66.83 | 48.29 | 76.74 | 62.86 | 72.35\n", " |
uie-m-large (24L1024H) | 49.35 | 74.55 | 70.50 | 92.66 | 78.49 | 83.02\n", " |
uie-m-base (12L768H) | 38.46 | 74.31 | 63.37 | 87.32 | 76.27 | 80.13\n", " |