# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """save inference model for auto dialogue evaluation""" import os import sys import six import numpy as np import time import paddle import paddle.fluid as fluid import ade.reader as reader from ade_net import create_net from ade.utils.configure import PDConfig from ade.utils.input_field import InputField from ade.utils.model_check import check_cuda def do_save_inference_model(args): test_prog = fluid.default_main_program() startup_prog = fluid.default_startup_program() with fluid.program_guard(test_prog, startup_prog): test_prog.random_seed = args.random_seed startup_prog.random_seed = args.random_seed with fluid.unique_name.guard(): context_wordseq = fluid.data( name='context_wordseq', shape=[-1, 1], dtype='int64', lod_level=1) response_wordseq = fluid.data( name='response_wordseq', shape=[-1, 1], dtype='int64', lod_level=1) labels = fluid.data(name='labels', shape=[-1, 1], dtype='int64') input_inst = [context_wordseq, response_wordseq, labels] input_field = InputField(input_inst) data_reader = fluid.io.DataLoader.from_generator( feed_list=input_inst, capacity=4, iterable=False) logits = create_net( is_training=False, model_input=input_field, args=args) if args.use_cuda: place = fluid.CUDAPlace(0) else: place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(startup_prog) assert (args.init_from_params) or (args.init_from_pretrain_model) if args.init_from_params: fluid.load(test_prog, args.init_from_params) elif args.init_from_pretrain_model: fluid.load(test_prog, args.init_from_pretrain_model) # saving inference model fluid.io.save_inference_model( args.inference_model_dir, feeded_var_names=[ input_field.context_wordseq.name, input_field.response_wordseq.name, ], target_vars=[logits, ], executor=exe, main_program=test_prog, model_filename="model.pdmodel", params_filename="params.pdparams") print("save inference model at %s" % (args.inference_model_dir)) if __name__ == "__main__": args = PDConfig(yaml_file="./data/config/ade.yaml") args.build() check_cuda(args.use_cuda) do_save_inference_model(args)