from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys import math import time import argparse import functools import numpy as np import paddle import paddle.fluid as fluid import models import reader from utility import add_arguments, print_arguments from utility import fmt_time, recall_topk # yapf: disable parser = argparse.ArgumentParser(description=__doc__) add_arg = functools.partial(add_arguments, argparser=parser) add_arg('model', str, "ResNet50", "Set the network to use.") add_arg('embedding_size', int, 0, "Embedding size.") add_arg('batch_size', int, 10, "Minibatch size.") add_arg('image_shape', str, "3,224,224", "Input image size.") add_arg('use_gpu', bool, True, "Whether to use GPU or not.") add_arg('with_mem_opt', bool, False, "Whether to use memory optimization or not.") add_arg('pretrained_model', str, None, "Whether to use pretrained model.") # yapf: enable model_list = [m for m in dir(models) if "__" not in m] def eval(args): # parameters from arguments model_name = args.model pretrained_model = args.pretrained_model with_memory_optimization = args.with_mem_opt image_shape = [int(m) for m in args.image_shape.split(",")] assert model_name in model_list, "{} is not in lists: {}".format(args.model, model_list) image = fluid.layers.data(name='image', shape=image_shape, dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int64') # model definition model = models.__dict__[model_name]() out = model.net(input=image, embedding_size=args.embedding_size) test_program = fluid.default_main_program().clone(for_test=True) if with_memory_optimization: fluid.memory_optimize(fluid.default_main_program()) place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) if pretrained_model: def if_exist(var): return os.path.exists(os.path.join(pretrained_model, var.name)) fluid.io.load_vars(exe, pretrained_model, predicate=if_exist) test_reader = paddle.batch(reader.test(args), batch_size=args.batch_size, drop_last=False) feeder = fluid.DataFeeder(place=place, feed_list=[image, label]) fetch_list = [out.name] f, l = [], [] for batch_id, data in enumerate(test_reader()): t1 = time.time() [feas] = exe.run(test_program, fetch_list=fetch_list, feed=feeder.feed(data)) label = np.asarray([x[1] for x in data]) f.append(feas) l.append(label) t2 = time.time() period = t2 - t1 if batch_id % 20 == 0: print("[%s] testbatch %d, time %2.2f sec" % \ (fmt_time(), batch_id, period)) f = np.vstack(f) l = np.hstack(l) recall = recall_topk(f, l, k=1) print("[%s] End test %d, test_recall %.5f" % (fmt_time(), len(f), recall)) sys.stdout.flush() def main(): args = parser.parse_args() print_arguments(args) eval(args) if __name__ == '__main__': main()