# 论文复现指南 ## 目录 - [1. 总览](#1) - [1.1 背景](#1.1) - [1.2 前序工作](#1.2) - [2. 整体框图](#2) - [2.1 流程概览](#2.1) - [2.2 reprod_log whl包](#2.2) - [3. 论文复现理论知识及实战](#3) - [3.1 模型结构对齐](#3.1) - [3.2 验证/测试集数据读取对齐](#3.2) - [3.3 评估指标对齐](#3.3) - [3.4 损失函数对齐](#3.4) - [3.5 优化器对齐](#3.5) - [3.6 学习率对齐](#3.6) - [3.7 正则化策略对齐](#3.7) - [3.8 反向对齐](#3.8) - [3.9 训练集数据读取对齐](#3.9) - [3.10 网络初始化对齐](#3.10) - [3.11 模型训练对齐](#3.11) - [4. 论文复现注意事项与FAQ](#4) - [4.1 模型结构对齐](#4.1) - [4.2 验证/测试集数据读取对齐](#4.2) - [4.3 评估指标对齐](#4.3) - [4.4 损失函数对齐](#4.4) - [4.5 优化器对齐](#4.5) - [4.6 学习率对齐](#4.6) - [4.7 正则化策略对齐](#4.7) - [4.8 反向对齐](#4.8) - [4.9 训练集数据读取对齐](#4.9) - [4.10 网络初始化对齐](#4.10) - [4.11 模型训练对齐](#4.11) ## 1. 总览 ### 1.1 背景 * 以深度学习为核心的人工智能技术仍在高速发展,通过论文复现,开发者可以获得 * 学习成长:自我能力提升 * 技术积累:对科研或工作有所帮助和启发 * 社区荣誉:成果被开发者广泛使用 ### 1.2 前序工作 基于本指南复现论文过程中,建议开发者准备以下内容。 * 了解该模型输入输出格式。以AlexNet图像分类任务为例,通过阅读论文与参考代码,了解到模型输入为`[batch_size, 3, 224, 244]`的tensor,类型为`float32`或者`float16`,label为`[batch, ]`的label,类型为`int64`。 * 准备好训练/验证数据集,用于模型训练与评估 * 准备好fake input data以及label,与模型输入shape、type等保持一致,用于后续模型前向对齐。 * 在对齐模型前向过程中,我们不需要考虑数据集模块等其他模块,此时使用fake data是将模型结构和数据部分解耦非常合适的一种方式。 * 将fake data以文件的形式存储下来,也可以保证PaddlePaddle与参考代码的模型结构输入是完全一致的,更便于排查问题。 * 在该步骤中,以AlexNet为例,生成fake data的脚本可以参考:[gen_fake_data.py](https://github.com/littletomatodonkey/AlexNet-Prod/blob/master/pipeline/fake_data/gen_fake_data.py)。 * 在特定设备(CPU/GPU)上,跑通参考代码的预测过程(前向)以及至少2轮(iteration)迭代过程,保证后续基于PaddlePaddle复现论文过程中可对比。 * 本文档基于 `AlexNet-Prod` 代码以及`reprod_log` whl包进行说明与测试。如果希望体验,建议参考[AlexNet-Reprod文档](https://github.com/littletomatodonkey/AlexNet-Prod/blob/master/README.md)进行安装与测试。 ## 2. 整体框图 ### 2.1 流程概览 面对一篇计算机视觉论文,复现该论文的整体流程如下图所示。 ![图片](images/framework.png) 总共包含11个步骤。为了高效复现论文,设置了5个验收节点。如上图中黄色框所示。后续章节会详细介绍上述步骤和验收节点,具体内容安排如下: * 第3章:介绍11个复现步骤的理论知识、实战以及验收流程。 * 第4章:针对复现流程过程中每个步骤可能出现的问题,本章会进行详细介绍。如果还是不能解决问题,可以提ISSUE进行讨论,提ISSUE地址:[https://github.com/PaddlePaddle/Paddle/issues/new/choose](https://github.com/PaddlePaddle/Paddle/issues/new/choose) ### 2.2 reprod_log whl包 #### 2.2.1 reprod_log工具简介 `reprod_log`是用于论文复现赛中辅助自查和验收工具。该工具源代码地址在:[https://github.com/WenmuZhou/reprod_log](https://github.com/WenmuZhou/reprod_log)。主要功能如下: * 存取指定节点的输入输出tensor * 基于文件的tensor读写 * 2个字典的对比验证 * 对比结果的输出与记录 更多API与使用方法可以参考:[reprod_log API使用说明](https://github.com/WenmuZhou/reprod_log/blob/master/README.md)。 #### 2.2.2 reprod_log使用demo 下面基于代码:[https://github.com/littletomatodonkey/AlexNet-Prod/tree/master/pipeline/reprod_log_demo](https://github.com/littletomatodonkey/AlexNet-Prod/tree/master/pipeline/reprod_log_demo),给出如何使用该工具。 文件夹中包含`write_log.py`和`check_log_diff.py`文件,其中`write_log.py`中给出了`ReprodLogger`类的使用方法,`check_log_diff.py`给出了`ReprodDiffHelper`类的使用方法,依次运行两个python文件,使用下面的方式运行代码。 ```shell # 进入文件夹 cd pipeline/reprod_log_demo # 随机生成矩阵,写入文件中 python3.7 write_log.py # 进行文件对比,输出日志 python3.7 check_log_diff.py ``` 最终会输出以下内容 ``` 2021-09-28 01:07:44,832 - reprod_log.utils - INFO - demo_test_1: 2021-09-28 01:07:44,832 - reprod_log.utils - INFO - mean diff: check passed: True, value: 0.0 2021-09-28 01:07:44,832 - reprod_log.utils - INFO - demo_test_2: 2021-09-28 01:07:44,832 - reprod_log.utils - INFO - mean diff: check passed: False, value: 0.3336232304573059 2021-09-28 01:07:44,832 - reprod_log.utils - INFO - diff check failed ``` 可以看出:对于key为`demo_test_1`的矩阵,由于diff为0,小于设置的阈值`1e-6`,核验成功;对于key为`demo_test_2`的矩阵,由于diff为0.33,大于设置的阈值`1e-6`,核验失败。 #### 2.2.3 reprod_log在论文复现中应用 在论文复现中,基于reprod_log的结果记录模块,产出下面若干文件 ``` log_reprod ├── forward_paddle.npy ├── forward_torch.npy # 与forward_paddle.npy作为一并核查的文件对 ├── metric_paddle.npy ├── metric_torch.npy # 与metric_paddle.npy作为一并核查的文件对 ├── loss_paddle.npy ├── loss_torch.npy # 与loss_paddle.npy作为一并核查的文件对 ├── bp_align_paddle.npy ├── bp_align_torch.npy # 与bp_align_paddle.npy作为一并核查的文件对 ├── train_align_paddle.npy ├── train_align_benchmark.npy # PaddlePaddle提供的参考评估指标 ``` 基于reprod_log的`ReprodDiffHelper`模块,产出下面5个日志文件。 ``` ├── forward_diff.log # forward_paddle.npy与forward_torch.npy生成的diff结果文件 ├── metric_diff.log # metric_paddle.npy与metric_torch.npy生成的diff结果文件 ├── loss_diff.log # loss_paddle.npy与loss_torch.npy生成的diff结果文件 ├── bp_align_diff.log # bp_align_paddle.npy与bp_align_torch.npy生成的diff结果文件 ├── train_align_diff.log # train_align_paddle.npy与train_align_benchmark.npy生成的diff结果文件 ``` 上述文件的生成代码都需要开发者进行开发,验收时需要提供上面罗列的所有文件(不需要提供产生这些文件的可运行程序)以及完整的模型训练评估程序和日志。 AlexNet-Prod项目提供了基于reprod_log的5个验收点对齐验收示例,具体代码地址为:[https://github.com/littletomatodonkey/AlexNet-Prod/blob/master/pipeline/](https://github.com/littletomatodonkey/AlexNet-Prod/blob/master/pipeline/), 每个文件夹中的README.md文档提供了使用说明。 ## 3. 论文复现理论知识及实战 ### 3.1 模型结构对齐 对齐模型结构时,一般有3个主要步骤: * 网络结构代码转换 * 权重转换 * 模型组网正确性验证 下面详细介绍这3个部分。 #### 3.1.1 网络结构代码转换 **【基本流程】** 由于PyTorch的API和PaddlePaddle的API非常相似,可以参考[PyTorch-PaddlePaddle API映射表](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/08_api_mapping/pytorch_api_mapping_cn.html) ,组网部分代码直接进行手动转换即可。 **【注意事项】** 如果遇到PaddlePaddle没有的API,可以尝试用多种API来组合,也可以给PaddlePaddle团队提[ISSUE](https://github.com/PaddlePaddle/Paddle/issues),获得支持。 **【实战】** AlexNet网络结构的PyTorch实现: [alexnet-pytorch](https://github.com/littletomatodonkey/AlexNet-Prod/blob/master/pipeline/Step1/AlexNet_torch/torchvision/models/alexnet.py) 对应转换后的PaddlePaddle实现: [alexnet-paddle](https://github.com/littletomatodonkey/AlexNet-Prod/blob/master/pipeline/Step1/AlexNet_paddle/paddlevision/models/alexnet.py) #### 3.1.2 权重转换 **【基本流程】** 组网代码转换完成之后,需要对模型权重进行转换,如果PyTorch repo中已经提供权重,那么可以直接下载并进行后续的转换;如果没有提供,则可以基于PyTorch代码,随机生成一个初始化权重(定义完model以后,使用`torch.save()` API保存模型权重),然后进行权重转换。 **【注意事项】** 在权重转换的时候,需要注意`paddle.nn.Linear`以及`paddle.nn.BatchNorm2D`等API的权重保存格式和名称等与PyTorch稍有diff,具体内容可以参考`5.1章节`。 **【实战】** AlexNet的代码转换脚本可以在这里查看:[https://github.com/littletomatodonkey/AlexNet-Prod/blob/master/pipeline/weights/torch2paddle.py](https://github.com/littletomatodonkey/AlexNet-Prod/blob/master/pipeline/weights/torch2paddle.py), 注意:运行该代码需要首先下载PyTorch的AlexNet预训练模型到该目录下,下载地址为:[https://download.pytorch.org/models/alexnet-owt-7be5be79.pth](https://download.pytorch.org/models/alexnet-owt-7be5be79.pth) ```python # https://github.com/littletomatodonkey/AlexNet-Prod/blob/master/pipeline/weights/torch2paddle.py import numpy as np import torch import paddle def transfer(): input_fp = "alexnet-owt-7be5be79.pth" output_fp = "alexnet_paddle.pdparams" torch_dict = torch.load(input_fp) paddle_dict = {} fc_names = [ "classifier.1.weight", "classifier.4.weight", "classifier.6.weight" ] for key in torch_dict: weight = torch_dict[key].cpu().detach().numpy() flag = [i in key for i in fc_names] if any(flag): print("weight {} need to be trans".format(key)) weight = weight.transpose() paddle_dict[key] = weight paddle.save(paddle_dict, output_fp) transfer() ``` 运行完成之后,会在当前目录生成`alexnet_paddle.pdparams`文件,即为转换后的PaddlePaddle预训练模型。 #### 3.1.3 模型组网正确性验证 **【基本流程】** 1. 定义PyTorch模型,加载权重,固定seed,基于numpy生成随机数,转换为PyTorch可以处理的tensor,送入网络,获取输出,使用reprod_log保存结果。 2. 定义PaddlePaddle模型,加载权重,固定seed,基于numpy生成随机数,转换为PaddlePaddle可以处理的tensor,送入网络,获取输出,使用reprod_log保存结果。 3. 使用reprod_log排查diff,小于阈值,即可完成自测。 **【注意事项】** * 模型在前向对齐验证时,需要调用`model.eval()`方法,保证组网中的随机量被关闭,比如BatchNorm、Dropout等。 * 给定相同的输入数据,为保证可复现性,如果有随机数生成,固定相关的随机种子。 * 输出diff可以使用`np.mean(np.abs(o1 - o2))`进行计算,一般小于1e-6的话,可以认为前向没有问题。如果最终输出结果diff较大,可以使用二分的方法进行排查,比如说ResNet50,包含1个stem、4个res-stage、global avg-pooling以及最后的fc层,那么完成模型组网和权重转换之后,如果模型输出没有对齐,可以尝试输出中间某一个res-stage的tensor进行对比,如果相同,则向后进行排查;如果不同,则继续向前进行排查,以此类推,直到找到导致没有对齐的操作。 **【实战】** AlexNet模型组网正确性验证可以参考如下示例代码: [https://github.com/littletomatodonkey/AlexNet-Prod/tree/master/pipeline/Step1](https://github.com/littletomatodonkey/AlexNet-Prod/tree/master/pipeline/Step1) **【验收】** 对于待复现的项目,前向对齐验收流程如下。 1. 准备输入:fake data * 使用参考代码的dataloader,生成一个batch的数据,保存下来,在前向对齐时,直接从文件中读入。 * 固定随机数种子,生成numpy随机矩阵,转化tensor 2. 保存输出: * PaddlePaddle/PyTorch:dict,key为tensor的name(自定义),value为tensor的值。最后将dict保存到文件中。建议命名为`forward_paddle.npy`和`forward_pytorch.npy`。 3. 自测:使用reprod_log加载2个文件,使用report功能,记录结果到日志文件中,建议命名为`forward_diff_log.txt`,观察diff,二者diff小于特定的阈值即可。 4. 提交内容:新建文件夹,将`forward_paddle.npy`、`forward_pytorch.npy`与`forward_diff_log.txt`文件放在文件夹中,后续的输出结果和自查日志也放在该文件夹中,一并打包上传即可。 5. 注意: * PaddlePaddle与PyTorch保存的dict的key需要保持相同,否则report过程可能会提示key无法对应,从而导致report失败,之后的`【验收】`环节也是如此。 * 如果是固定随机数种子,建议将fake data保存到dict中,方便check参考代码和PaddlePaddle的输入是否一致。 ### 3.2 验证/测试集数据读取对齐 **【基本流程】** 对于一个数据集,一般有以下一些信息需要重点关注 * 数据集名称、下载地址 * 训练集/验证集/测试集图像数量、类别数量、分辨率等 * 数据集标注格式、标注信息 * 数据集通用的预处理方法 PaddlePaddle中数据集相关的API为`paddle.io.Dataset`,PyTorch中对应为`torch.utils.data.Dataset`,二者功能一致,在绝大多数情况下,可以使用该类构建数据集。它是描述Dataset方法和行为的抽象类,在具体实现的时候,需要继承这个基类,实现其中的`__getitem__`和`__len__`方法。除了参考代码中相关实现,也可以参考待复现论文中的说明。 复现完Dataset之后,可以构建Dataloader,对数据进行组batch、批处理,送进网络进行计算。 `paddle.io.DataLoader`可以进行数据加载,将数据分成批数据,并提供加载过程中的采样。PyTorch对应的实现为`torch.utils.data.DataLoader`,二者在功能上一致,只是在参数方面稍有diff:(1)PaddlePaddle缺少对`pin_memory`等参数的支持;(2)PaddlePaddle增加了`use_shared_memory`参数来选择是否使用共享内存加速数据加载过程。 **【注意事项】** 论文中一般会提供数据集的名称以及基本信息。复现过程中,我们在下载完数据之后,建议先检查下是否和论文中描述一致,否则可能存在的问题有: * 数据集年份不同,比如论文中使用了MS-COCO2014数据集,但是我们下载的是MS-COCO2017数据集,如果不对其进行检查,可能会导致我们最终训练的数据量等与论文中有diff * 数据集使用方式不同,有些论文中,可能只是抽取了该数据集的子集进行方法验证,此时需要注意抽取方法,需要保证抽取出的子集完全相同。 * 在评估指标对齐时,我们可以固定batch size,关闭Dataloader的shuffle操作。 构建数据集时,也会涉及到一些预处理方法,以CV领域为例,PaddlePaddle提供了一些现成的视觉类操作api,具体可以参考:[paddle.vision类API](https://www.paddlepaddle.org.cn/documentation/docs/zh/api/paddle/vision/Overview_cn.html)。对应地,PyTorch中的数据处理api可以参考:[torchvision.transforms类API](https://pytorch.org/vision/stable/transforms.html)。对于其中之一,可以找到另一个平台的实现。 此外, * 有些自定义的数据处理方法,如果不涉及到深度学习框架的部分,可以直接复用。 * 对于特定任务中的数据预处理方法,比如说图像分类、检测、分割等,如果没有现成的API可以调用,可以参考官方模型套件中的一些实现方法,比如PaddleClas、PaddleDetection、PaddleSeg等。 **【实战】** AlexNet模型复现过程中,数据预处理和Dataset、Dataloader的检查可以参考该文件: [https://github.com/littletomatodonkey/AlexNet-Prod/blob/master/pipeline/Step2/test_data.py](https://github.com/littletomatodonkey/AlexNet-Prod/blob/master/pipeline/Step2/test_data.py) 使用方法可以参考[数据检查文档](https://github.com/littletomatodonkey/AlexNet-Prod/blob/master/pipeline/Step2/README.md)。 ### 3.3 评估指标对齐 **【基本流程】** PaddlePaddle提供了一系列Metric计算类,比如说`Accuracy`, `Auc`, `Precision`, `Recall`等,而PyTorch中,目前可以通过组合的方式实现metric计算,或者调用[torchmetrics](https://torchmetrics.readthedocs.io/en/latest/),在论文复现的过程中,需要注意保证对于该模块,给定相同的输入,二者输出完全一致。具体流程如下。 1. 定义PyTorch模型,加载训练好的权重(需要是官网repo提供好的),获取评估结果,使用reprod_log保存结果。 2. 定义PaddlePaddle模型,加载训练好的权重(需要是从PyTorch转换得到),获取评估结果,使用reprod_log保存结果。 3. 使用reprod_log排查diff,小于阈值,即可完成自测。 **【注意事项】** 在评估指标对齐之前,需要注意保证对于该模块,给定相同的输入,二者输出完全一致。 **【实战】** 评估指标对齐检查方法可以参考文档:[评估指标对齐检查方法文档](https://github.com/littletomatodonkey/AlexNet-Prod/blob/master/pipeline/Step2/README.md#%E6%93%8D%E4%BD%9C%E6%AD%A5%E9%AA%A4) **【验收】** 对于待复现的项目,评估指标对齐验收流程如下。 1. 输入:dataloader, model 2. 输出: * PaddlePaddle/PyTorch:dict,key为tensor的name(自定义),value为具体评估指标的值。最后将dict使用reprod_log保存到各自的文件中,建议命名为`metric_paddle.npy`和`metric_pytorch.npy`。 * 自测:使用reprod_log加载2个文件,使用report功能,记录结果到日志文件中,建议命名为`metric_diff_log.txt`,观察diff,二者diff小于特定的阈值即可。 3. 提交内容:将`metric_paddle.npy`、`metric_pytorch.npy`与`metric_diff_log.txt`文件备份到`3.1节验收环节`新建的文件夹中,后续的输出结果和自查日志也放在该文件夹中,一并打包上传即可。 4. 注意: * 数据需要是真实数据 * 需要检查论文是否只是抽取了验证集/测试集中的部分文件,如果是的话,则需要保证PaddlePaddle和参考代码中dataset使用的数据集一致。 ### 3.4 损失函数对齐 **【基本流程】** PaddlePaddle与PyTorch均提供了很多loss function,用于模型训练,具体的API映射表可以参考:[Loss类API映射列表](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/08_api_mapping/pytorch_api_mapping_cn.html#lossapi)。以CrossEntropyLoss为例,主要区别为: * PaddlePaddle提供了对软标签、指定softmax计算纬度的支持。 如果论文中使用的loss function没有指定的API,则可以尝试通过组合API的方式,实现自定义的loss function。 具体流程如下。 1. 定义PyTorch模型,加载权重,加载fake data 和 fake label(或者固定seed,基于numpy生成随机数),转换为PyTorch可以处理的tensor,送入网络,获取loss结果,使用reprod_log保存结果。 2. 定义PaddlePaddle模型,加载fake data 和 fake label(或者固定seed,基于numpy生成随机数),转换为PaddlePaddle可以处理的tensor,送入网络,获取loss结果,使用reprod_log保存结果。 3. 使用reprod_log排查diff,小于阈值,即可完成自测。 **【注意事项】** * 计算loss的时候,建议设置`model.eval()`,避免模型中随机量的问题。 **【实战】** 本部分可以参考文档:[https://github.com/littletomatodonkey/AlexNet-Prod/blob/master/pipeline/Step3/README.md](https://github.com/littletomatodonkey/AlexNet-Prod/blob/master/pipeline/Step3/README.md)。 **【验收】** 对于待复现的项目,损失函数对齐验收流程如下。 1. 输入:fake data & label 2. 输出: * PaddlePaddle/PyTorch:dict,key为tensor的name(自定义),value为具体评估指标的值。最后将dict使用reprod_log保存到各自的文件中,建议命名为`loss_paddle.npy`和`loss_pytorch.npy`。 3. 自测:使用reprod_log加载2个文件,使用report功能,记录结果到日志文件中,建议命名为`loss_diff_log.txt`,观察diff,二者diff小于特定的阈值即可。 4. 提交内容:将`loss_paddle.npy`、`loss_pytorch.npy`与`loss_diff_log.txt`文件备份到`3.1节验收环节`新建的文件夹中,后续的输出结果和自查日志也放在该文件夹中,一并打包上传即可。 ### 3.5 优化器对齐 **【基本流程】** PaddlePaddle中的optimizer有`paddle.optimizer`等一系列实现,PyTorch中则有`torch.Optim`等一系列实现。 **【注意事项】** 以SGD等优化器为例,PaddlePaddle与Pytorch的优化器区别主要如下。 * PaddlePaddle在优化器中增加了对梯度裁剪的支持,在训练GAN或者一些NLP、多模态任务中,这个用到的比较多。 * PaddlePaddle的SGD不支持动量更新、动量衰减和Nesterov动量,这里需要使用`paddle.optimizer.Momentum` API实现这些功能。 **【实战】** 本部分对齐建议对照[PaddlePaddle优化器API文档](https://www.paddlepaddle.org.cn/documentation/docs/zh/api/paddle/optimizer/Overview_cn.html)与参考代码的优化器实现进行对齐,用之后的反向对齐统一验证该模块的正确性。 ### 3.6 学习率对齐 **【基本流程】** * 学习率策略主要用于指定训练过程中的学习率变化曲线,这里可以将定义好的学习率策略,不断step,即可得到对应的学习率值,可以将学习率值保存在列表或者矩阵中,使用`reprod_log`工具判断二者是否对齐。 **【注意事项】** PaddlePaddle中,需要首先构建学习率策略,再传入优化器对象中;对于PyTorch,如果希望使用更丰富的学习率策略,需要先构建优化器,再传入学习率策略类API。 **【实战】** 学习率复现对齐,可以参考代码:[学习率对齐验证文档](https://github.com/littletomatodonkey/AlexNet-Prod/blob/master/pipeline/Step4/README.md#%E5%AD%A6%E4%B9%A0%E7%8E%87%E5%AF%B9%E9%BD%90%E9%AA%8C%E8%AF%81)。 ### 3.7 正则化策略对齐 **【基本流程】** L2正则化策略用于模型训练,可以防止模型对训练数据过拟合,L1正则化可以用于得到稀疏化的权重矩阵,PaddlePaddle中有`paddle.regularizer.L1Decay`与`paddle.regularizer.L2Decay` API。PyTorch中,torch.optim集成的优化器只有L2正则化方法,直接在构建optimizer的时候,传入`weight_decay`参数即可。 **【注意事项】** * PaddlePaddle的optimizer中支持L1Decat/L2Decay。 * PyTorch的optimizer支持不同参数列表的学习率分别设置,params传入字典即可,而PaddlePaddle目前尚未支持这种行为,可以通过设置`ParamAttr`的`learning_rate`参数,来确定相对学习率倍数,使用链接可以参考:[PaddleClas-ResNet model](https://github.com/PaddlePaddle/PaddleClas/blob/d67a352fcacc49ae6bbc7d1c7158e2c65f8e06d9/ppcls/arch/backbone/legendary_models/resnet.py#L121)。 **【实战】** 本部分对齐建议对照[PaddlePaddle正则化API文档](https://www.paddlepaddle.org.cn/documentation/docs/zh/api/paddle/regularizer/L2Decay_cn.html)与参考代码的优化器实现进行对齐,用之后的反向对齐统一验证该模块的正确性。 ### 3.8 反向对齐 **【基本流程】** 此处可以通过numpy生成假的数据和label(推荐),也可以准备固定的真实数据。具体流程如下。 1. 检查两个代码的训练超参数全部一致,如优化器及其超参数、学习率、BatchNorm/LayerNorm中的eps等。 2. 将PaddlePaddle与PyTorch网络中涉及的所有随机操作全部关闭,如dropout、drop_path等,推荐将模型设置为eval模式(`model.eval()`) 3. 加载相同的weight dict(可以通过PyTorch来存储随机的权重),将准备好的数据分别传入网络并迭代,观察二者loss是否一致(此处batch-size要一致,如果使用多个真实数据,要保证传入网络的顺序一致) 4. 如果经过2轮以上,loss均可以对齐,则基本可以认为反向对齐。 **【注意事项】** * 如果第一轮loss就没有对齐,则需要仔细排查一下模型前向部分。 * 如果第二轮开始,loss开始无法对齐,则首先需要排查下超参数的差异,没问题的话,在`loss.backward()`方法之后,使用`tensor.grad`获取梯度值,二分的方法查找diff,定位出PaddlePaddle与PyTorch梯度无法对齐的API或者操作,然后进一步验证并反馈。 梯度的打印方法示例代码如下所示,注释掉的内容即为打印网络中所有参数的梯度shape。 ```python # 代码地址:https://github.com/littletomatodonkey/AlexNet-Prod/blob/63184b258eda650e7a8b7f2610b55f4337246630/pipeline/Step4/AlexNet_paddle/train.py#L93 loss_list = [] for idx in range(max_iter): image = paddle.to_tensor(fake_data) target = paddle.to_tensor(fake_label) output = model(image) loss = criterion(output, target) loss.backward() # for name, tensor in model.named_parameters(): # grad = tensor.grad # print(name, tensor.grad.shape) # break optimizer.step() optimizer.clear_grad() loss_list.append(loss) ``` **【实战】** 本部分可以参考文档:[反向对齐操作文档](https://github.com/littletomatodonkey/AlexNet-Prod/blob/master/pipeline/Step4/README.md#%E5%8F%8D%E5%90%91%E5%AF%B9%E9%BD%90%E6%93%8D%E4%BD%9C%E6%96%B9%E6%B3%95)。 **【验收】** 对于待复现的项目,反向对齐验收流程如下。 1. 输入:fake data & label 2. 输出: * PaddlePaddle/PyTorch:dict,key为tensor的name(自定义),value为具体loss的值。最后将dict使用reprod_log保存到各自的文件中,建议命名为`bp_align_paddle.npy`和`bp_align_pytorch.npy`。 3. 自测:使用reprod_log加载2个文件,使用report功能,记录结果到日志文件中,建议命名为`bp_align_diff_log.txt`,观察diff,二者diff小于特定的阈值即可。 4. 提交内容:将`bp_align_paddle.npy`、`bp_align_pytorch.npy`与`bp_align_diff_log.txt`文件备份到`3.1节验收环节`新建的文件夹中,后续的输出结果和自查日志也放在该文件夹中,一并打包上传即可。 5. 注意: * loss需要保存至少2轮以上。 * 在迭代的过程中,需要保证模型的batch size等超参数完全相同 * 在迭代的过程中,需要设置`model.eval()`,使用固定的假数据,同时加载相同权重的预训练模型。 ### 3.9 训练集数据读取对齐 **【基本流程】** 该部分内容与3.2节内容基本一致,参考PyTorch的代码,实现训练集数据读取与预处理模块即可。 **【注意事项】** 该部分内容,可以参考3.8节的自测方法,将输入的`fake data & label`替换为训练的dataloader,但是需要注意的是: * 在使用train dataloader的时候,建议设置random seed,对于PyTorch来说 ```python #initialize random seed torch.manual_seed(config.SEED) torch.cuda.manual_seed_all(config.SEED) np.random.seed(config.SEED) random.seed(config.SEED) ``` 对于PaddlePaddle来说 ```python paddle.seed(config.SEED) np.random.seed(config.SEED) random.seed(config.SEED) ``` **【实战】** 本部分对齐建议对照[PaddlePaddle vision高层API文档](https://www.paddlepaddle.org.cn/documentation/docs/zh/api/paddle/vision/Overview_cn.html)与参考代码的数据预处理实现进行对齐,用之后的训练对齐统一验证该模块的正确性。 ### 3.10 网络初始化对齐 **【基本流程】** * 下面给出了部分初始化API的映射表。 |PaddlePaddle API | PyTorch API | |---|---| | paddle.nn.initializer.KaimingNormal | torch.nn.init.kaiming_normal_ | | paddle.nn.initializer.KaimingUniform | torch.nn.init.kaiming_uniform_ | | paddle.nn.initializer.XavierNormal | torch.nn.init.xavier_normal_ | | paddle.nn.initializer.XavierUniform | torch.nn.init.xavier_uniform_ | **【注意事项】** * 更多初始化API可以参考[PyTorch初始化API文档](https://pytorch.org/docs/stable/nn.init.html)以及[PaddlePaddle初始化API文档](https://www.paddlepaddle.org.cn/documentation/docs/zh/api/paddle/nn/Overview_cn.html#chushihuaxiangguan)。 **【实战】** 本部分对齐建议对照[PaddlePaddle 初始化API文档](https://www.paddlepaddle.org.cn/documentation/docs/zh/api/paddle/nn/Overview_cn.html#chushihuaxiangguan)与参考代码的初始化实现对齐。 ### 3.11 模型训练对齐 **【基本流程】** 完成前面的步骤之后,就可以开始全量数据的训练对齐任务了。按照下面的步骤进行训练对齐。 1. 准备train/eval data, loader, model 2. 对model按照论文所述进行初始化(如果论文中提到加载pretrain,则按需加载pretrained model) 3. 加载配置,开始训练,迭代得到最终模型与评估指标,将评估指标使用reprod_log保存到文件中。 4. 将PaddlePaddle提供的参考指标使用reprod_log提交到另一个文件中。 5. 使用reprod_log排查diff,小于阈值,即可完成自测。 **【注意事项】** * 【强烈】建议先做完反向对齐之后再进行模型训练对齐,二者之间的不确定量包括:数据集、PaddlePaddle与参考代码在模型training mode下的区别,初始化参数。 * 在训练对齐过程中,受到较多随机量的影响,精度有少量diff是正常的,以ImageNet1k数据集的分类为例,diff在0.15%以内可以认为是正常的,这里可以根据不同的任务,适当调整对齐检查的阈值(`ReprodDiffHelper.report`函数中的`diff_threshold`参数)。 * 训练过程中的波动是正常的,如果最终收敛结果不一致,可以 * 仔细排查Dropout、BatchNorm以及其他组网模块及超参是否无误。 * 基于参考代码随机生成一份预训练模型,转化为PaddlePaddle的模型,并使用PaddlePaddle加载训练,对比二者的收敛曲线与最终结果,排查初始化影响。 * 使用参考代码的Dataloader生成的数据,进行模型训练,排查train dataloader的影响。 **【实战】** 本部分可以参考文档:[训练对齐操作文档](https://github.com/littletomatodonkey/AlexNet-Prod/blob/master/pipeline/Step5/README.md)。 **【验收】** 对于待复现的项目,训练对齐验收流程如下。 1. 输入:train/eval dataloader, model 2. 输出: * PaddlePaddle:dict,key为保存值的name(自定义),value为具体评估指标的值。最后将dict使用reprod_log保存到文件中,建议命名为`train_align_paddle.npy`。 * benchmark:dict,key为保存值的name(自定义),value为论文复现赛的评估指标要求的值。最后将dict使用reprod_log保存到文件中,建议命名为`train_align_benchmark.npy`。 3. 自测:使用reprod_log加载2个文件,使用report功能,记录结果到日志文件中,建议命名为`train_align_diff_log.txt`,观察diff,二者diff小于特定的阈值即可。 4. 提交内容:将`train_align_paddle.npy`、`train_align_benchmark.npy`与`train_align_diff_log.txt`文件备份到`3.1节验收环节`新建的文件夹中,最终一并打包上传即可。 ### 3.12 单机多卡训练 如果希望使用单机多卡提升训练效率,可以从以下几个过程对代码进行修改。 #### 3.12.1 数据读取 对于PaddlePaddle来说,多卡数据读取这块主要的变化在sampler 对于单机单卡,sampler实现方式如下所示。 ```python train_sampler = paddle.io.RandomSampler(dataset) train_batch_sampler = paddle.io.BatchSampler( sampler=train_sampler, batch_size=args.batch_size) ``` 对于单机多卡任务,sampler实现方式如下所示。 ```python train_batch_sampler = paddle.io.DistributedBatchSampler( dataset=dataset, batch_size=args.batch_size, shuffle=True, drop_last=False ) ``` 注意:在这种情况下,单机多卡的代码仍然能够以单机单卡的方式运行,因此建议以这种sampler方式进行论文复现。 #### 3.12.2 多卡模型初始化 如果以多卡的方式运行,需要初始化并行训练环境,代码如下所示。 ```python if paddle.distributed.get_world_size() > 1: paddle.distributed.init_parallel_env() ``` 在模型组网并初始化参数之后,需要使用`paddle.DataParallel()`对模型进行封装,使得模型可以通过数据并行的模式被执行。代码如下所示。 ```python if paddle.distributed.get_world_size() > 1: model = paddle.DataParallel(model) ``` #### 3.12.3 模型保存、日志保存等其他模块 以模型保存为例,我们只需要在0号卡上保存即可,否则多个trainer同时保存的话,可能会造成写冲突,导致最终保存的模型不可用。 #### 3.12.4 程序启动方式 对于单机单卡,启动脚本如下所示。 ```shell export CUDA_VISIBLE_DEVICES=0 python3.7 train.py \ --data-path /paddle/data/ILSVRC2012_torch \ --lr 0.00125 \ --batch-size 32 \ --output-dir "./output/" ``` 对于单机多卡(示例中为8卡训练),启动脚本如下所示。 ```shell export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3.7 -m paddle.distributed.launch \ --gpus="0,1,2,3,4,5,6,7" \ train.py \ --data-path /paddle/data/ILSVRC2012_torch \ --lr 0.01 \ --batch-size 32 \ --output-dir "./output/" ``` 注意:这里8卡训练时,虽然单卡的batch size没有变化(32),但是总卡的batch size相当于是单卡的8倍,因此学习率也设置为了单卡时的8倍。 ## 4. 论文复现注意事项与FAQ 本部分主要总结大家在论文复现赛过程中遇到的问题,如果本章内容没有能够解决你的问题,欢迎在群里提问讨论。 ### 4.1 模型结构对齐 * 对于`nn.Linear`层的weight参数,PaddlePaddle与PyTorch的保存方式不同,在转换时需要进行转置 * paddle.nn.BatchNorm2D包含4个参数`weight`, `bias`, `_mean`, `_variance`,torch.nn.BatchNorm2d包含4个参数`weight`, `bias`, `running_mean`, `running_var`, `num_batches_tracked`,`num_batches_tracked`在PaddlePaddle中没有用到,剩下4个的对应关系为 * `weight` -> `weight` * `bias` -> `bias` * `_variance` -> `running_var` * `_mean` -> `running_mean` ### 4.2 验证/测试集数据读取对齐 * 如果使用PaddlePaddle提供的数据集API,比如说`paddle.vision.datasets.Cifar10`等,可能无法完全与参考代码在数据顺序上保持一致,但是这些数据集的实现都是经过广泛验证的,可以使用。此时对数据预处理和后处理进行排查就好。`数据集+数据处理`的部分可以通过评估指标对齐完成自查。 ### 4.3 评估指标对齐 ### 4.4 损失函数对齐 ### 4.5 优化器对齐 * 在某些任务中,比如说深度学习可视化、可解释性等任务中,一般只要求模型前向过程,不需要训练,此时优化器、学习率等用于模型训练的模块对于该类论文复现是不需要的。 ### 4.6 学习率对齐 ### 4.7 正则化策略对齐 ### 4.8 反向对齐 ### 4.9 训练集数据读取对齐 ### 4.10 网络初始化对齐 * 对于不同的深度学习框架,网络初始化在大多情况下,即使值的分布完全一致,也无法保证值完全一致,这里也是论文复现中不确定性比较大的地方。 * CNN对于模型初始化相对来说没有那么敏感,在迭代轮数与数据集足够的情况下,最终精度指标基本接近;而transformer系列模型对于初始化比较敏感,在transformer系列模型训练对齐过程中,建议对这一块进行重点检查。 ### 4.11 模型训练对齐 * 小数据上指标波动可能比较大,时间允许的话,可以跑多次实验,取平均值。