import os import numpy as np import time import sys import paddle import paddle.fluid as fluid from resnet import TSN_ResNet import reader import argparse import functools from paddle.fluid.framework import Parameter from utility import add_arguments, print_arguments parser = argparse.ArgumentParser(description=__doc__) add_arg = functools.partial(add_arguments, argparser=parser) # yapf: disable add_arg('num_layers', int, 50, "How many layers for ResNet model.") add_arg('with_mem_opt', bool, True, "Whether to use memory optimization or not.") add_arg('class_dim', int, 101, "Number of class.") add_arg('seg_num', int, 7, "Number of segments.") add_arg('image_shape', str, "3,224,224", "Input image size.") add_arg('test_model', str, None, "Test model path.") # yapf: enable def infer(args): # parameters from arguments seg_num = args.seg_num class_dim = args.class_dim num_layers = args.num_layers test_model = args.test_model if test_model == None: print('Please specify the test model ...') return image_shape = [int(m) for m in args.image_shape.split(",")] image_shape = [seg_num] + image_shape # model definition model = TSN_ResNet(layers=num_layers, seg_num=seg_num) image = fluid.layers.data(name='image', shape=image_shape, dtype='float32') out = model.net(input=image, class_dim=class_dim) # for test inference_program = fluid.default_main_program().clone(for_test=True) if args.with_mem_opt: fluid.memory_optimize(fluid.default_main_program()) place = fluid.CUDAPlace(0) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) def is_parameter(var): if isinstance(var, Parameter): return isinstance(var, Parameter) if test_model is not None: vars = filter(is_parameter, inference_program.list_vars()) fluid.io.load_vars(exe, test_model, vars=vars) # reader test_reader = paddle.batch(reader.infer(seg_num), batch_size=1) feeder = fluid.DataFeeder(place=place, feed_list=[image]) fetch_list = [out.name] # test TOPK = 1 for batch_id, data in enumerate(test_reader()): data, vid = data[0] data = [[data]] result = exe.run(inference_program, fetch_list=fetch_list, feed=feeder.feed(data)) result = result[0][0] pred_label = np.argsort(result)[::-1][:TOPK] print("Test sample: {0}, score: {1}, class {2}".format(vid, result[ pred_label], pred_label)) sys.stdout.flush() def main(): args = parser.parse_args() print_arguments(args) infer(args) if __name__ == '__main__': main()