""" a custom layer for 'crop', maybe we should implement this in standard way. more info can be found here: http://caffe.berkeleyvision.org/tutorial/layers/crop.html """ from .register import register def crop_shape(input_shape, shape=None): """ calculate the output shape of this layer using input shape Args: @input_shape (num | list of num): a list of number or num which represents the input shape @shape (list of integer): the shape of output Returns: @output_shape (list of num): a list of numbers represent the output shape """ if isinstance(input_shape, list): assert len(input_shape) == 2, "the number of crop's inputs must be 2" return input_shape[1] elif not shape is None: assert len(shape) == len(input_shape.shape), "input_shape is diff with output_shape" return shape else: raise Exception,"crop_shape input error" return None def crop_layer(input, name, shape=None, axis=2, offset=None): """ build a layer of type 'Crop' using fluid Args: @input (variables | list of variables): input fluid variable for this layer @shape (list of integer): the shape of output @name (str): name for this layer @axis (integer): parameter from caffe's Crop layer @offset (Variable|list/tuple of integer|None): parameter from caffe's Crop layer Returns: output (variable): output variable for this layer """ input_shape = None output_shape = None input_tensor = None if isinstance(input, list): assert len(input) == 2, "the number of crop's inputs must be 2" input_shape = input[0].shape output_shape = input[1].shape input_tensor = input[0] elif not shape is None: assert len(shape) == len(input.shape), "input_shape is diff with output_shape" input_shape = input.shape output_shape = shape input_tensor = input else: raise Exception,"crop_layer input error" assert len(output_shape) == len(input_shape), "input_shape is diff with output_shape" if axis < 0: axis += len(input_shape) if offset is not None: assert (len(input_shape) - axis) == len(offset), "invalid offset[%s] in crop layer" % (str(offset)) offset = [0] * axis + offset import paddle.fluid as fluid output = fluid.layers.crop(input_tensor, shape=output_shape, offsets=offset, name=name) return output register(kind='Crop', shape=crop_shape, layer=crop_layer)