import os import sys import time import numpy as np import paddle.fluid as fluid import paddle.v2 as paddle def to_lodtensor(data, place): """ convert to LODtensor """ seq_lens = [len(seq) for seq in data] cur_len = 0 lod = [cur_len] for l in seq_lens: cur_len += l lod.append(cur_len) flattened_data = np.concatenate(data, axis=0).astype("int64") flattened_data = flattened_data.reshape([len(flattened_data), 1]) res = fluid.LoDTensor() res.set(flattened_data, place) res.set_lod([lod]) return res def load_vocab(filename): """ load imdb vocabulary """ vocab = {} with open(filename) as f: wid = 0 for line in f: vocab[line.strip()] = wid wid += 1 vocab[""] = len(vocab) return vocab def data2tensor(data, place): """ data2tensor """ input_seq = to_lodtensor(map(lambda x: x[0], data), place) y_data = np.array(map(lambda x: x[1], data)).astype("int64") y_data = y_data.reshape([-1, 1]) return {"words": input_seq, "label": y_data} def prepare_data(data_type="imdb", self_dict=False, batch_size=128, buf_size=50000): """ prepare data """ if self_dict: word_dict = load_vocab(data_type + ".vocab") else: if data_type == "imdb": word_dict = paddle.dataset.imdb.word_dict() else: raise RuntimeError("No such dataset") if data_type == "imdb": if "CE_MODE_X" in os.environ: train_reader = paddle.batch( paddle.dataset.imdb.train(word_dict), batch_size=batch_size) test_reader = paddle.batch( paddle.dataset.imdb.test(word_dict), batch_size=batch_size) else: train_reader = paddle.batch( paddle.reader.shuffle( paddle.dataset.imdb.train(word_dict), buf_size=buf_size), batch_size=batch_size) test_reader = paddle.batch( paddle.reader.shuffle( paddle.dataset.imdb.test(word_dict), buf_size=buf_size), batch_size=batch_size) else: raise RuntimeError("no such dataset") return word_dict, train_reader, test_reader