# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import logging import numpy as np # disable gpu training for this example import os os.environ["CUDA_VISIBLE_DEVICES"] = "" import paddle import paddle.fluid as fluid logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger("fluid") logger.setLevel(logging.INFO) num_context_feature = 22 def parse_args(): parser = argparse.ArgumentParser(description="PaddlePaddle DeepFM example") parser.add_argument( '--model_path', type=str, #required=True, default='models', help="The path of model parameters gz file") parser.add_argument( '--data_path', type=str, required=False, help="The path of the dataset to infer") parser.add_argument( '--embedding_size', type=int, default=16, help="The size for embedding layer (default:10)") parser.add_argument( '--sparse_feature_dim', type=int, default=1000001, help="The size for embedding layer (default:1000001)") parser.add_argument( '--batch_size', type=int, default=1000, help="The size of mini-batch (default:1000)") return parser.parse_args() def to_lodtensor(data, place): seq_lens = [len(seq) for seq in data] cur_len = 0 lod = [cur_len] for l in seq_lens: cur_len += l lod.append(cur_len) flattened_data = np.concatenate(data, axis=0).astype("int64") flattened_data = flattened_data.reshape([len(flattened_data), 1]) res = fluid.LoDTensor() res.set(flattened_data, place) res.set_lod([lod]) return res def data2tensor(data, place): feed_dict = {} dense = data[0] sparse = data[1:-1] y = data[-1] #user_data = np.array([x[0] for x in data]).astype("float32") #user_data = user_data.reshape([-1, 10]) #feed_dict["user_profile"] = user_data dense_data = np.array([x[0] for x in data]).astype("float32") dense_data = dense_data.reshape([-1, 3]) feed_dict["dense_feature"] = dense_data for i in range(num_context_feature): sparse_data = to_lodtensor([x[1 + i] for x in data], place) feed_dict["context" + str(i)] = sparse_data context_fm = to_lodtensor( np.array([x[-2] for x in data]).astype("float32"), place) feed_dict["context_fm"] = context_fm y_data = np.array([x[-1] for x in data]).astype("int64") y_data = y_data.reshape([-1, 1]) feed_dict["label"] = y_data return feed_dict def test(): args = parse_args() place = fluid.CPUPlace() test_scope = fluid.core.Scope() # filelist = ["%s/%s" % (args.data_path, x) for x in os.listdir(args.data_path)] from map_reader import MapDataset map_dataset = MapDataset() map_dataset.setup(args.sparse_feature_dim) exe = fluid.Executor(place) whole_filelist = ["./out/normed_test_session.txt"] test_files = whole_filelist[int(0.0 * len(whole_filelist)):int(1.0 * len( whole_filelist))] epochs = 1 for i in range(epochs): cur_model_path = os.path.join(args.model_path, "epoch" + str(1) + ".model") with open("./testres/res" + str(i), 'w') as r: with fluid.scope_guard(test_scope): [inference_program, feed_target_names, fetch_targets] = \ fluid.io.load_inference_model(cur_model_path, exe) test_reader = map_dataset.test_reader(test_files, 1000, 100000) k = 0 for batch_id, data in enumerate(test_reader()): print(len(data[0])) feed_dict = data2tensor(data, place) loss_val, auc_val, accuracy, predict, _ = exe.run( inference_program, feed=feed_dict, fetch_list=fetch_targets, return_numpy=False) x = np.array(predict) for j in range(x.shape[0]): r.write(str(x[j][1])) r.write("\n") if __name__ == '__main__': test()