#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import time import sys import math import numpy as np import argparse import functools import paddle import paddle.fluid as fluid import reader_cv2 as reader import models import utils from utils.utility import add_arguments,print_arguments parser = argparse.ArgumentParser(description=__doc__) # yapf: disable add_arg = functools.partial(add_arguments, argparser=parser) add_arg('use_gpu', bool, True, "Whether to use GPU or not.") add_arg('class_dim', int, 1000, "Class number.") add_arg('image_shape', str, "3,224,224", "Input image size") add_arg('with_mem_opt', bool, True, "Whether to use memory optimization or not.") add_arg('pretrained_model', str, None, "Whether to use pretrained model.") add_arg('model', str, "SE_ResNeXt50_32x4d", "Set the network to use.") add_arg('save_inference', bool, False, "Whether to save inference model or not") add_arg('resize_short_size', int, 256, "Set resize short size") # yapf: enable def infer(args): # parameters from arguments class_dim = args.class_dim model_name = args.model save_inference = args.save_inference pretrained_model = args.pretrained_model with_memory_optimization = args.with_mem_opt image_shape = [int(m) for m in args.image_shape.split(",")] model_list = [m for m in dir(models) if "__" not in m] assert model_name in model_list, "{} is not in lists: {}".format(args.model, model_list) image = fluid.layers.data(name='image', shape=image_shape, dtype='float32') # model definition model = models.__dict__[model_name]() if model_name == "GoogleNet": out, _, _ = model.net(input=image, class_dim=class_dim) else: out = model.net(input=image, class_dim=class_dim) out = fluid.layers.softmax(out) test_program = fluid.default_main_program().clone(for_test=True) fetch_list = [out.name] if with_memory_optimization and not save_inference: fluid.memory_optimize( fluid.default_main_program(), skip_opt_set=set(fetch_list)) place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) fluid.io.load_persistables(exe, pretrained_model) if save_inference: fluid.io.save_inference_model( dirname=model_name, feeded_var_names=['image'], main_program=test_program, target_vars=out, executor=exe, model_filename='model', params_filename='params') print("model: ",model_name," is already saved") exit(0) test_batch_size = 1 test_reader = paddle.batch(reader.test(settings=args), batch_size=test_batch_size) feeder = fluid.DataFeeder(place=place, feed_list=[image]) TOPK = 1 for batch_id, data in enumerate(test_reader()): result = exe.run(test_program, fetch_list=fetch_list, feed=feeder.feed(data)) result = result[0][0] pred_label = np.argsort(result)[::-1][:TOPK] print("Test-{0}-score: {1}, class {2}" .format(batch_id, result[pred_label], pred_label)) sys.stdout.flush() def main(): args = parser.parse_args() print_arguments(args) infer(args) if __name__ == '__main__': main()