# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import functools import os from PIL import Image import paddle.fluid as fluid import paddle import numpy as np from scipy.misc import imsave from model import build_generator_resnet_9blocks, build_gen_discriminator import glob from utility import add_arguments, print_arguments parser = argparse.ArgumentParser(description=__doc__) add_arg = functools.partial(add_arguments, argparser=parser) # yapf: disable add_arg('input', str, None, "The images to be infered.") add_arg('output', str, "./infer_result", "The directory the infer result to be saved to.") add_arg('init_model', str, None, "The init model file of directory.") add_arg('input_style', str, "A", "The style of the input, A or B") add_arg('use_gpu', bool, True, "Whether to use GPU to train.") # yapf: enable def infer(args): data_shape = [-1, 3, 256, 256] input = fluid.layers.data(name='input', shape=data_shape, dtype='float32') if args.input_style == "A": model_name = 'g_a' fake = build_generator_resnet_9blocks(input, name="g_A") elif args.input_style == "B": model_name = 'g_b' fake = build_generator_resnet_9blocks(input, name="g_B") else: raise "Input with style [%s] is not supported." % args.input_style # prepare environment place = fluid.CPUPlace() if args.use_gpu: place = fluid.CUDAPlace(0) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) fluid.io.load_persistables(exe, args.init_model + "/" + model_name) if not os.path.exists(args.output): os.makedirs(args.output) for file in glob.glob(args.input): image_name = os.path.basename(file) image = Image.open(file) image = image.resize((256, 256)) image = np.array(image) / 127.5 - 1 if len(image.shape) != 3: continue data = image.transpose([2, 0, 1])[np.newaxis, :].astype("float32") tensor = fluid.LoDTensor() tensor.set(data, place) fake_temp = exe.run(fetch_list=[fake.name], feed={"input": tensor}) fake_temp = np.squeeze(fake_temp[0]).transpose([1, 2, 0]) input_temp = np.squeeze(data).transpose([1, 2, 0]) imsave(args.output + "/fake_" + image_name, ( (fake_temp + 1) * 127.5).astype(np.uint8)) if __name__ == "__main__": args = parser.parse_args() print_arguments(args) infer(args)