from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import tarfile import numpy as np from PIL import Image from os import path import paddle import random SOS = 0 EOS = 1 NUM_CLASSES = 95 DATA_SHAPE = [1, 48, 512] DATA_MD5 = "7256b1d5420d8c3e74815196e58cdad5" DATA_URL = "http://paddle-ocr-data.bj.bcebos.com/data.tar.gz" CACHE_DIR_NAME = "attention_data" SAVED_FILE_NAME = "data.tar.gz" DATA_DIR_NAME = "data" TRAIN_DATA_DIR_NAME = "train_images" TEST_DATA_DIR_NAME = "test_images" TRAIN_LIST_FILE_NAME = "train.list" TEST_LIST_FILE_NAME = "test.list" class DataGenerator(object): def __init__(self): pass def train_reader(self, img_root_dir, img_label_list, batchsize, cycle, shuffle=True): ''' Reader interface for training. :param img_root_dir: The root path of the image for training. :type img_root_dir: str :param img_label_list: The path of the file for training. :type img_label_list: str :param cycle: If number of iterations is greater than dataset_size / batch_size it reiterates dataset over as many times as necessary. :type cycle: bool ''' img_label_lines = [] to_file = "tmp.txt" def _shuffle_data(input_file_path, output_file_path, shuffle, batchsize): def _write_file(file_path, lines_to_write): open(file_path, 'w').writelines( ["{}\n".format(item) for item in lines_to_write]) input_file = open(input_file_path, 'r') lines_to_shuf = [line.strip() for line in input_file.readlines()] if not shuffle: _write_file(output_file_path, lines_to_shuf) elif batchsize == 1: random.shuffle(lines_to_shuf) _write_file(output_file_path, lines_to_shuf) else: #partial shuffle for i in range(len(lines_to_shuf)): str_i = lines_to_shuf[i] list_i = str_i.strip().split(' ') str_i_ = "%04d%.4f " % (int(list_i[0]), random.random() ) + str_i lines_to_shuf[i] = str_i_ lines_to_shuf.sort() delete_num = random.randint(1, 100) del lines_to_shuf[0:delete_num] #batch merge and shuffle lines_concat = [] for i in range(0, len(lines_to_shuf), batchsize): lines_concat.append(' '.join(lines_to_shuf[i:i + batchsize])) random.shuffle(lines_concat) #batch split out_file = open(output_file_path, 'w') for i in range(len(lines_concat)): tmp_list = lines_concat[i].split(' ') for j in range(int(len(tmp_list) / 5)): out_file.write("{} {} {} {}\n".format(tmp_list[ 5 * j + 1], tmp_list[5 * j + 2], tmp_list[ 5 * j + 3], tmp_list[5 * j + 4])) out_file.close() input_file.close() _shuffle_data(img_label_list, to_file, shuffle, batchsize) img_label_lines = open(to_file, 'r').readlines() def reader(): sizes = len(img_label_lines) // batchsize if sizes == 0: raise ValueError('batchsize is bigger than the dataset size.') while True: for i in range(sizes): result = [] sz = [0, 0] max_len = 0 for k in range(batchsize): line = img_label_lines[i * batchsize + k] items = line.split(' ') label = [int(c) for c in items[-1].split(',')] max_len = max(max_len, len(label)) for j in range(batchsize): line = img_label_lines[i * batchsize + j] items = line.split(' ') label = [int(c) for c in items[-1].split(',')] mask = np.zeros((max_len)).astype('float32') mask[:len(label) + 1] = 1.0 if max_len > len(label) + 1: extend_label = [EOS] * (max_len - len(label) - 1) label.extend(extend_label) else: label = label[0:max_len - 1] img = Image.open(os.path.join(img_root_dir, items[ 2])).convert('L') if j == 0: sz = img.size img = img.resize((sz[0], sz[1])) img = np.array(img) - 127.5 img = img[np.newaxis, ...] result.append([img, [SOS] + label, label + [EOS], mask]) yield result if not cycle: break return reader def num_classes(): '''Get classes number of this dataset. ''' return NUM_CLASSES def data_shape(): '''Get image shape of this dataset. It is a dummy shape for this dataset. ''' return DATA_SHAPE def data_reader(batch_size, images_dir=None, list_file=None, cycle=False, shuffle=False, data_type="train"): generator = DataGenerator() if data_type == "train": if images_dir is None: data_dir = download_data() images_dir = path.join(data_dir, TRAIN_DATA_DIR_NAME) if list_file is None: list_file = path.join(data_dir, TRAIN_LIST_FILE_NAME) elif data_type == "test": if images_dir is None: data_dir = download_data() images_dir = path.join(data_dir, TEST_DATA_DIR_NAME) if list_file is None: list_file = path.join(data_dir, TEST_LIST_FILE_NAME) else: print("data type only support train | test") raise Exception("data type only support train | test") return generator.train_reader( images_dir, list_file, batch_size, cycle, shuffle=shuffle) def download_data(): '''Download train and test data. ''' tar_file = paddle.dataset.common.download( DATA_URL, CACHE_DIR_NAME, DATA_MD5, save_name=SAVED_FILE_NAME) data_dir = path.join(path.dirname(tar_file), DATA_DIR_NAME) if not path.isdir(data_dir): t = tarfile.open(tar_file, "r:gz") t.extractall(path=path.dirname(tar_file)) t.close() return data_dir