#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. from __future__ import division import paddle.fluid as fluid import numpy as np import math import os import warnings use_cudnn = True if 'ce_mode' in os.environ: use_cudnn = False def cal_padding(img_size, stride, filter_size, dilation=1): """Calculate padding size.""" valid_filter_size = dilation * (filter_size - 1) + 1 if img_size % stride == 0: out_size = max(filter_size - stride, 0) else: out_size = max(filter_size - (img_size % stride), 0) return out_size // 2, out_size - out_size // 2 def norm_layer(input, norm_type='batch_norm', name=None, is_test=False): if norm_type == 'batch_norm': param_attr = fluid.ParamAttr( name=name + '_w', initializer=fluid.initializer.Constant(1.0)) bias_attr = fluid.ParamAttr( name=name + '_b', initializer=fluid.initializer.Constant(value=0.0)) return fluid.layers.batch_norm( input, param_attr=param_attr, bias_attr=bias_attr, is_test=is_test, moving_mean_name=name + '_mean', moving_variance_name=name + '_var') elif norm_type == 'instance_norm': helper = fluid.layer_helper.LayerHelper("instance_norm", **locals()) dtype = helper.input_dtype() epsilon = 1e-5 mean = fluid.layers.reduce_mean(input, dim=[2, 3], keep_dim=True) var = fluid.layers.reduce_mean( fluid.layers.square(input - mean), dim=[2, 3], keep_dim=True) if name is not None: scale_name = name + "_scale" offset_name = name + "_offset" scale_param = fluid.ParamAttr( name=scale_name, initializer=fluid.initializer.Constant(1.0), trainable=True) offset_param = fluid.ParamAttr( name=offset_name, initializer=fluid.initializer.Constant(0.0), trainable=True) scale = helper.create_parameter( attr=scale_param, shape=input.shape[1:2], dtype=dtype) offset = helper.create_parameter( attr=offset_param, shape=input.shape[1:2], dtype=dtype) tmp = fluid.layers.elementwise_mul(x=(input - mean), y=scale, axis=1) tmp = tmp / fluid.layers.sqrt(var + epsilon) tmp = fluid.layers.elementwise_add(tmp, offset, axis=1) return tmp else: raise NotImplementedError("norm type: [%s] is not support" % norm_type) def initial_type(name, input, op_type, fan_out, init="normal", use_bias=False, filter_size=0, stddev=0.02): if init == "kaiming": if op_type == 'conv': fan_in = input.shape[1] * filter_size * filter_size elif op_type == 'deconv': fan_in = fan_out * filter_size * filter_size else: if len(input.shape) > 2: fan_in = input.shape[1] * input.shape[2] * input.shape[3] else: fan_in = input.shape[1] bound = 1 / math.sqrt(fan_in) param_attr = fluid.ParamAttr( name=name + "_w", initializer=fluid.initializer.Uniform( low=-bound, high=bound)) if use_bias == True: bias_attr = fluid.ParamAttr( name=name + '_b', initializer=fluid.initializer.Uniform( low=-bound, high=bound)) else: bias_attr = False else: param_attr = fluid.ParamAttr( name=name + "_w", initializer=fluid.initializer.NormalInitializer( loc=0.0, scale=stddev)) if use_bias == True: bias_attr = fluid.ParamAttr( name=name + "_b", initializer=fluid.initializer.Constant(0.0)) else: bias_attr = False return param_attr, bias_attr def conv2d(input, num_filters=64, filter_size=7, stride=1, stddev=0.02, padding=0, name="conv2d", norm=None, activation_fn=None, relufactor=0.0, use_bias=False, padding_type=None, initial="normal", is_test=False): if padding != 0 and padding_type != None: warnings.warn( 'padding value and padding type are set in the same time, and the final padding width and padding height are computed by padding_type' ) param_attr, bias_attr = initial_type( name=name, input=input, op_type='conv', fan_out=num_filters, init=initial, use_bias=use_bias, filter_size=filter_size, stddev=stddev) need_crop = False if padding_type == "SAME": top_padding, bottom_padding = cal_padding(input.shape[2], stride, filter_size) left_padding, right_padding = cal_padding(input.shape[2], stride, filter_size) height_padding = bottom_padding width_padding = right_padding if top_padding != bottom_padding or left_padding != right_padding: height_padding = top_padding + stride width_padding = left_padding + stride need_crop = True padding = [height_padding, width_padding] elif padding_type == "VALID": height_padding = 0 width_padding = 0 padding = [height_padding, width_padding] else: padding = padding conv = fluid.layers.conv2d( input, num_filters, filter_size, name=name, stride=stride, padding=padding, use_cudnn=use_cudnn, param_attr=param_attr, bias_attr=bias_attr) if need_crop: conv = fluid.layers.crop( conv, shape=(-1, conv.shape[1], conv.shape[2] - 1, conv.shape[3] - 1), offsets=(0, 0, 1, 1)) if norm is not None: conv = norm_layer( input=conv, norm_type=norm, name=name + "_norm", is_test=is_test) if activation_fn == 'relu': conv = fluid.layers.relu(conv, name=name + '_relu') elif activation_fn == 'leaky_relu': conv = fluid.layers.leaky_relu( conv, alpha=relufactor, name=name + '_leaky_relu') elif activation_fn == 'tanh': conv = fluid.layers.tanh(conv, name=name + '_tanh') elif activation_fn == 'sigmoid': conv = fluid.layers.sigmoid(conv, name=name + '_sigmoid') elif activation_fn == None: conv = conv else: raise NotImplementedError("activation: [%s] is not support" % activation_fn) return conv def deconv2d(input, num_filters=64, filter_size=7, stride=1, stddev=0.02, padding=0, outpadding=[0, 0, 0, 0], name="deconv2d", norm=None, activation_fn=None, relufactor=0.0, use_bias=False, padding_type=None, output_size=None, initial="normal", is_test=False): if padding != 0 and padding_type != None: warnings.warn( 'padding value and padding type are set in the same time, and the final padding width and padding height are computed by padding_type' ) param_attr, bias_attr = initial_type( name=name, input=input, op_type='deconv', fan_out=num_filters, init=initial, use_bias=use_bias, filter_size=filter_size, stddev=stddev) need_crop = False if padding_type == "SAME": top_padding, bottom_padding = cal_padding(input.shape[2], stride, filter_size) left_padding, right_padding = cal_padding(input.shape[2], stride, filter_size) height_padding = bottom_padding width_padding = right_padding if top_padding != bottom_padding or left_padding != right_padding: height_padding = top_padding + stride width_padding = left_padding + stride need_crop = True padding = [height_padding, width_padding] elif padding_type == "VALID": height_padding = 0 width_padding = 0 padding = [height_padding, width_padding] else: padding = padding conv = fluid.layers.conv2d_transpose( input, num_filters, output_size=output_size, name=name, filter_size=filter_size, stride=stride, padding=padding, use_cudnn=use_cudnn, param_attr=param_attr, bias_attr=bias_attr) if np.mean(outpadding) != 0 and padding_type == None: conv = fluid.layers.pad2d( conv, paddings=outpadding, mode='constant', pad_value=0.0) if norm is not None: conv = norm_layer( input=conv, norm_type=norm, name=name + "_norm", is_test=is_test) if activation_fn == 'relu': conv = fluid.layers.relu(conv, name=name + '_relu') elif activation_fn == 'leaky_relu': if relufactor == 0.0: raise Warning( "the activation is leaky_relu, but the relufactor is 0") conv = fluid.layers.leaky_relu( conv, alpha=relufactor, name=name + '_leaky_relu') elif activation_fn == 'tanh': conv = fluid.layers.tanh(conv, name=name + '_tanh') elif activation_fn == 'sigmoid': conv = fluid.layers.sigmoid(conv, name=name + '_sigmoid') elif activation_fn == None: conv = conv else: raise NotImplementedError("activation: [%s] is not support" % activation_fn) return conv def linear(input, output_size, norm=None, stddev=0.02, activation_fn=None, relufactor=0.2, name="linear", initial="normal", is_test=False): param_attr, bias_attr = initial_type( name=name, input=input, op_type='linear', fan_out=output_size, init=initial, use_bias=True, filter_size=1, stddev=stddev) linear = fluid.layers.fc(input, output_size, param_attr=param_attr, bias_attr=bias_attr, name=name) if norm is not None: linear = norm_layer( input=linear, norm_type=norm, name=name + '_norm', is_test=is_test) if activation_fn == 'relu': linear = fluid.layers.relu(linear, name=name + '_relu') elif activation_fn == 'leaky_relu': if relufactor == 0.0: raise Warning( "the activation is leaky_relu, but the relufactor is 0") linear = fluid.layers.leaky_relu( linear, alpha=relufactor, name=name + '_leaky_relu') elif activation_fn == 'tanh': linear = fluid.layers.tanh(linear, name=name + '_tanh') elif activation_fn == 'sigmoid': linear = fluid.layers.sigmoid(linear, name=name + '_sigmoid') elif activation_fn == None: linear = linear else: raise NotImplementedError("activation: [%s] is not support" % activation_fn) return linear def conv_cond_concat(x, y): ones = fluid.layers.fill_constant_batch_size_like( x, [-1, y.shape[1], x.shape[2], x.shape[3]], "float32", 1.0) out = fluid.layers.concat([x, ones * y], 1) return out def conv_and_pool(x, num_filters, name, stddev=0.02, act=None): param_attr = fluid.ParamAttr( name=name + '_w', initializer=fluid.initializer.NormalInitializer( loc=0.0, scale=stddev)) bias_attr = fluid.ParamAttr( name=name + "_b", initializer=fluid.initializer.Constant(0.0)) out = fluid.nets.simple_img_conv_pool( input=x, filter_size=5, num_filters=num_filters, pool_size=2, pool_stride=2, param_attr=param_attr, bias_attr=bias_attr, act=act) return out