import paddle.v2 as paddle __all__ = ['vgg13', 'vgg16', 'vgg19'] def vgg(input, nums): def conv_block(input, num_filter, groups, num_channels=None): return paddle.networks.img_conv_group( input=input, num_channels=num_channels, pool_size=2, pool_stride=2, conv_num_filter=[num_filter] * groups, conv_filter_size=3, conv_act=paddle.activation.Relu(), pool_type=paddle.pooling.Max()) assert len(nums) == 5 # the channel of input feature is 3 conv1 = conv_block(input, 64, nums[0], 3) conv2 = conv_block(conv1, 128, nums[1]) conv3 = conv_block(conv2, 256, nums[2]) conv4 = conv_block(conv3, 512, nums[3]) conv5 = conv_block(conv4, 512, nums[4]) fc_dim = 4096 fc1 = paddle.layer.fc( input=conv5, size=fc_dim, act=paddle.activation.Relu(), layer_attr=paddle.attr.Extra(drop_rate=0.5)) fc2 = paddle.layer.fc( input=fc1, size=fc_dim, act=paddle.activation.Relu(), layer_attr=paddle.attr.Extra(drop_rate=0.5)) return fc2 def vgg13(input): nums = [2, 2, 2, 2, 2] return vgg(input, nums) def vgg16(input): nums = [2, 2, 3, 3, 3] return vgg(input, nums) def vgg19(input): nums = [2, 2, 4, 4, 4] return vgg(input, nums)