import sys import os import gzip import paddle.v2 as paddle import reader from network_conf import fc_net, convolution_net from utils import logger, load_dict, load_reverse_dict def infer(topology, data_dir, model_path, word_dict_path, label_dict_path, batch_size): def _infer_a_batch(inferer, test_batch, ids_2_word, ids_2_label): probs = inferer.infer(input=test_batch, field=["value"]) assert len(probs) == len(test_batch) for word_ids, prob in zip(test_batch, probs): word_text = " ".join([ids_2_word[id] for id in word_ids[0]]) print("%s\t%s\t%s" % (ids_2_label[prob.argmax()], " ".join(["{:0.4f}".format(p) for p in prob]), word_text)) logger.info("begin to predict...") use_default_data = (data_dir is None) if use_default_data: word_dict = paddle.dataset.imdb.word_dict() word_reverse_dict = dict((value, key) for key, value in word_dict.iteritems()) label_reverse_dict = {0: "positive", 1: "negative"} test_reader = paddle.dataset.imdb.test(word_dict) else: assert os.path.exists( word_dict_path), "the word dictionary file does not exist" assert os.path.exists( label_dict_path), "the label dictionary file does not exist" word_dict = load_dict(word_dict_path) word_reverse_dict = load_reverse_dict(word_dict_path) label_reverse_dict = load_reverse_dict(label_dict_path) test_reader = reader.test_reader(data_dir, word_dict)() dict_dim = len(word_dict) class_num = len(label_reverse_dict) prob_layer = topology(dict_dim, class_num, is_infer=True) # initialize PaddlePaddle paddle.init(use_gpu=False, trainer_count=1) # load the trained models parameters = paddle.parameters.Parameters.from_tar( gzip.open(model_path, "r")) inferer = paddle.inference.Inference( output_layer=prob_layer, parameters=parameters) test_batch = [] for idx, item in enumerate(test_reader): test_batch.append([item[0]]) if len(test_batch) == batch_size: _infer_a_batch(inferer, test_batch, word_reverse_dict, label_reverse_dict) test_batch = [] if len(test_batch): _infer_a_batch(inferer, test_batch, word_reverse_dict, label_reverse_dict) test_batch = [] if __name__ == "__main__": model_path = "models/dnn_params_pass_00000.tar.gz" assert os.path.exists(model_path), "the trained model does not exist." nn_type = "dnn" test_dir = None word_dict = None label_dict = None if nn_type == "dnn": topology = fc_net elif nn_type == "cnn": topology = convolution_net infer( topology=topology, data_dir=test_dir, word_dict_path=word_dict, label_dict_path=label_dict, model_path=model_path, batch_size=10)