import math import paddle.v2 as paddle def ngram_lm(hidden_size, embed_size, dict_size, gram_num=4, is_train=True): emb_layers = [] embed_param_attr = paddle.attr.Param( name="_proj", initial_std=0.001, learning_rate=1, l2_rate=0) for i in range(gram_num): word = paddle.layer.data( name="__word%02d__" % (i), type=paddle.data_type.integer_value(dict_size)) emb_layers.append( paddle.layer.embedding( input=word, size=embed_size, param_attr=embed_param_attr)) target_word = paddle.layer.data( name="__target_word__", type=paddle.data_type.integer_value(dict_size)) embed_context = paddle.layer.concat(input=emb_layers) hidden_layer = paddle.layer.fc( input=embed_context, size=hidden_size, act=paddle.activation.Sigmoid(), layer_attr=paddle.attr.Extra(drop_rate=0.5), bias_attr=paddle.attr.Param(learning_rate=2), param_attr=paddle.attr.Param( initial_std=1. / math.sqrt(embed_size * 8), learning_rate=1)) if is_train == True: cost = paddle.layer.hsigmoid( input=hidden_layer, label=target_word, num_classes=dict_size, param_attr=paddle.attr.Param(name="sigmoid_w"), bias_attr=paddle.attr.Param(name="sigmoid_b")) return cost else: prediction = paddle.layer.fc( size=dict_size - 1, input=hidden_layer, act=paddle.activation.Sigmoid(), bias_attr=paddle.attr.Param(name="sigmoid_b"), param_attr=paddle.attr.Param(name="sigmoid_w")) return prediction