# 背景介绍
CTR(Click-through rate) 是用来表示用户点击一个特定链接的概率,
通常被用来衡量一个在线广告系统的有效性。
当有多个广告位时,CTR 预估一般会作为排序的基准。
比如在搜索引擎的广告系统里,当用户输入一个带商业价值的搜索词(query)时,系统大体上会执行下列步骤:
1. 召回满足 query 的广告集合
2. 业务规则和相关性过滤
3. 根据拍卖机制和 CTR 排序
4. 展出
可以看到,CTR 在最终排序中起到了很重要的作用。
在业内,CTR 模型经历了如下的发展阶段:
- Logistic Regression(LR) + 特征工程
- LR + DNN 特征
- DNN + 特征工程
在发展早期时 LR 一统天下,但最近 DNN 模型由于其强大的学习能力和逐渐成熟的性能优化,
逐渐地接过 CTR 预估任务的大旗。
## LR vs DNN
下图展示了 LR 和一个 \(3x2\) 的 NN 模型的结构:
![img](./img/lr-vs-dnn.jpg)
LR 部分和蓝色箭头部分可以直接类比到 NN 中的结构,可以看到 LR 和 NN 有一些共通之处(比如权重累加),
但前者的模型复杂度在相同输入维度下比后者可能第很多(从某方面讲,模型越复杂,越有潜力学习到更复杂的信息)。
如果 LR 要达到匹敌 NN 的学习能力,必须增加输入的维度,也就是增加特征的数量(作为输入),
这也就是为何 LR 和大规模的特征工程必须绑定在一起的原因。
而 NN 模型具有自己学习新特征的能力,一定程度上能够提升特征使用的效率,
这使得 NN 模型在同样规模特征的情况下,更有可能达到更好的学习效果。
LR 对于 NN 模型的优势是对大规模稀疏特征的容纳能力,包括内存和计算量等,工业界都有非常成熟的优化方法。
本文后面的章节会演示如何使用 PaddlePaddle 编写一个结合两者优点的模型。
# 数据和任务抽象
我们可以将 \`click\` 作为学习目标,具体任务可以有以下几种方案:
1. 直接学习 click,0,1 作二元分类,或 pairwise rank(标签 1>0)
2. 统计每个广告的点击率,将同一个 query 下的广告两两组合,点击率高的>点击率低的
这里,我们直接使用第一种方法做分类任务。
我们使用 Kaggle 上 \`Click-through rate prediction\` 任务的数据集[1] 来演示模型。
具体的特征处理方法参看 [data process](./dataset.md)
# Wide & Deep Learning Model
谷歌在 16 年提出了 Wide & Deep Learning 的模型框架,用于融合 适合学习抽象特征的 DNN 和 适用于大规模系数特征的 LR 两种模型的优点。
## 模型简介
Wide & Deep Learning Model 可以作为一种相对成熟的模型框架使用,
在 CTR 预估的任务中工业界也有一定的应用,因此本文将演示使用此模型来完成 CTR 预估的任务。
模型结构如下:
![img](./img/wide-deep.png)
模型左边的 Wide 部分,可以容纳大规模系数特征,并且对一些特定的信息(比如 ID)有一定的记忆能力;
而模型右边的 Deep 部分,能够学习特征间的隐含关系,在相同数量的特征下有更好的学习和推导能力。
## 编写模型输入
模型只接受 3 个输入,分别是
- \`dnninput\` ,也就是 Deep 部分的输入
- \`lrinput\` ,也就是 Wide 部分的输入
- \`click\` , 点击与否,作为二分类模型学习的标签
dnn_merged_input = layer.data(
name='dnn_input',
type=paddle.data_type.sparse_binary_vector(data_meta_info['dnn_input']))
lr_merged_input = layer.data(
name='lr_input',
type=paddle.data_type.sparse_binary_vector(data_meta_info['lr_input']))
click = paddle.layer.data(name='click', type=dtype.dense_vector(1))
## 编写 Wide 部分
def build_lr_submodel():
fc = layer.fc(
input=lr_merged_input, size=1, name='lr', act=paddle.activation.Relu())
return fc
## 编写 Deep 部分
def build_dnn_submodel(dnn_layer_dims):
dnn_embedding = layer.fc(input=dnn_merged_input, size=dnn_layer_dims[0])
_input_layer = dnn_embedding
for no, dim in enumerate(dnn_layer_dims[1:]):
fc = layer.fc(
input=_input_layer,
size=dim,
act=paddle.activation.Relu(),
name='dnn-fc-%d' % no)
_input_layer = fc
return _input_layer
## 两者融合
# conbine DNN and LR submodels
def combine_submodels(dnn, lr):
merge_layer = layer.concat(input=[dnn, lr])
fc = layer.fc(
input=merge_layer,
size=1,
name='output',
# use sigmoid function to approximate ctr rate, a float value between 0 and 1.
act=paddle.activation.Sigmoid())
return fc
## 训练任务的定义
dnn = build_dnn_submodel(dnn_layer_dims)
lr = build_lr_submodel()
output = combine_submodels(dnn, lr)
# ==============================================================================
# cost and train period
# ==============================================================================
classification_cost = paddle.layer.multi_binary_label_cross_entropy_cost(
input=output, label=click)
params = paddle.parameters.create(classification_cost)
optimizer = paddle.optimizer.Momentum(momentum=0)
trainer = paddle.trainer.SGD(
cost=classification_cost, parameters=params, update_equation=optimizer)
dataset = AvazuDataset(train_data_path, n_records_as_test=test_set_size)
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 100 == 0:
logging.warning("Pass %d, Samples %d, Cost %f" % (
event.pass_id, event.batch_id * batch_size, event.cost))
if event.batch_id % 1000 == 0:
result = trainer.test(
reader=paddle.batch(dataset.test, batch_size=1000),
feeding=field_index)
logging.warning("Test %d-%d, Cost %f" % (event.pass_id, event.batch_id,
result.cost))
trainer.train(
reader=paddle.batch(
paddle.reader.shuffle(dataset.train, buf_size=500),
batch_size=batch_size),
feeding=field_index,
event_handler=event_handler,
num_passes=100)
# 写在最后
- [1]
- [2] Strategies for Training Large Scale Neural Network Language Models
-
[1]