# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import time import multiprocessing import numpy as np from paddle import fluid from ppdet.core.workspace import load_config, merge_config, create from ppdet.data.data_feed import create_reader from ppdet.utils.eval_utils import parse_fetches, eval_run, eval_results from ppdet.utils.stats import TrainingStats from ppdet.utils.cli import ArgsParser import ppdet.utils.checkpoint as checkpoint from ppdet.modeling.model_input import create_feeds import logging FORMAT = '%(asctime)s-%(levelname)s: %(message)s' logging.basicConfig(level=logging.INFO, format=FORMAT) logger = logging.getLogger(__name__) def main(): cfg = load_config(FLAGS.config) if 'architecture' in cfg: main_arch = cfg.architecture else: raise ValueError("'architecture' not specified in config file.") merge_config(FLAGS.opt) if cfg.use_gpu: devices_num = fluid.core.get_cuda_device_count() else: devices_num = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count())) if 'train_feed' not in cfg: train_feed = create(main_arch + 'TrainFeed') else: train_feed = create(cfg.train_feed) if FLAGS.eval: if 'eval_feed' not in cfg: eval_feed = create(main_arch + 'EvalFeed') else: eval_feed = create(cfg.eval_feed) place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) model = create(main_arch) lr_builder = create('LearningRate') optim_builder = create('OptimizerBuilder') startup_prog = fluid.Program() train_prog = fluid.Program() with fluid.program_guard(train_prog, startup_prog): with fluid.unique_name.guard(): train_pyreader, feed_vars = create_feeds(train_feed) train_fetches = model.train(feed_vars) loss = train_fetches['loss'] lr = lr_builder() optimizer = optim_builder(lr) optimizer.minimize(loss) train_reader = create_reader(train_feed, cfg.max_iters * devices_num) train_pyreader.decorate_sample_list_generator(train_reader, place) # parse train fetches train_keys, train_values, _ = parse_fetches(train_fetches) train_values.append(lr) if FLAGS.eval: eval_prog = fluid.Program() with fluid.program_guard(eval_prog, startup_prog): with fluid.unique_name.guard(): eval_pyreader, feed_vars = create_feeds(eval_feed) fetches = model.eval(feed_vars) eval_prog = eval_prog.clone(True) eval_reader = create_reader(eval_feed) eval_pyreader.decorate_sample_list_generator(eval_reader, place) # parse train fetches extra_keys = ['im_info', 'im_id'] if cfg.metric == 'COCO' else [] eval_keys, eval_values, eval_cls = parse_fetches(fetches, eval_prog, extra_keys) # 3. Compile program for multi-devices build_strategy = fluid.BuildStrategy() build_strategy.memory_optimize = False build_strategy.enable_inplace = False sync_bn = getattr(model.backbone, 'norm_type', None) == 'sync_bn' build_strategy.sync_batch_norm = sync_bn train_compile_program = fluid.compiler.CompiledProgram( train_prog).with_data_parallel( loss_name=loss.name, build_strategy=build_strategy) if FLAGS.eval: eval_compile_program = fluid.compiler.CompiledProgram(eval_prog) exe.run(startup_prog) freeze_bn = getattr(model.backbone, 'freeze_norm', False) if FLAGS.resume_checkpoint: checkpoint.load_checkpoint(exe, train_prog, FLAGS.resume_checkpoint) elif cfg.pretrain_weights and freeze_bn: checkpoint.load_and_fusebn(exe, train_prog, cfg.pretrain_weights) elif cfg.pretrain_weights: checkpoint.load_pretrain(exe, train_prog, cfg.pretrain_weights) train_stats = TrainingStats(cfg.log_smooth_window, train_keys) train_pyreader.start() start_time = time.time() end_time = time.time() cfg_name = os.path.basename(FLAGS.config).split('.')[0] save_dir = os.path.join(cfg.save_dir, cfg_name) for it in range(cfg.max_iters): start_time = end_time end_time = time.time() outs = exe.run(train_compile_program, fetch_list=train_values) stats = {k: np.array(v).mean() for k, v in zip(train_keys, outs[:-1])} train_stats.update(stats) logs = train_stats.log() strs = 'iter: {}, lr: {:.6f}, {}, time: {:.3f}'.format( it, np.mean(outs[-1]), logs, end_time - start_time) logger.info(strs) if it > 0 and it % cfg.snapshot_iter == 0: checkpoint.save(exe, train_prog, os.path.join(save_dir, str(it))) if FLAGS.eval: # Run evaluation results = eval_run(exe, eval_compile_program, eval_pyreader, eval_keys, eval_values, eval_cls) # Evaluation eval_results(results, eval_feed, cfg.metric, cfg.MaskHead.resolution, FLAGS.output_file) checkpoint.save(exe, train_prog, os.path.join(save_dir, "model_final")) train_pyreader.reset() if __name__ == '__main__': parser = ArgsParser() parser.add_argument( "-r", "--resume_checkpoint", default=None, type=str, help="Checkpoint path for resuming training.") parser.add_argument( "--eval", action='store_true', default=False, help="Whether to perform evaluation in train") parser.add_argument( "-f", "--output_file", default=None, type=str, help="Evaluation file name, default to bbox.json and mask.json." ) FLAGS = parser.parse_args() main()