import os import random import functools import numpy as np import paddle.v2 as paddle from PIL import Image, ImageEnhance random.seed(0) _R_MEAN = 123.0 _G_MEAN = 117.0 _B_MEAN = 104.0 DATA_DIM = 224 THREAD = 8 BUF_SIZE = 1024 DATA_DIR = 'ILSVRC2012' TRAIN_LIST = 'ILSVRC2012/train_list.txt' TEST_LIST = 'ILSVRC2012/test_list.txt' img_mean = np.array([_R_MEAN, _G_MEAN, _B_MEAN]).reshape((3, 1, 1)) def resize_short(img, target_size): percent = float(target_size) / min(img.size[0], img.size[1]) resized_width = int(round(img.size[0] * percent)) resized_height = int(round(img.size[1] * percent)) img = img.resize((resized_width, resized_height), Image.LANCZOS) return img def crop_image(img, target_size, center): width, height = img.size size = target_size if center == True: w_start = (width - size) / 2 h_start = (height - size) / 2 else: w_start = random.randint(0, width - size) h_start = random.randint(0, height - size) w_end = w_start + size h_end = h_start + size img = img.crop((w_start, h_start, w_end, h_end)) return img def distort_color(img): def random_brightness(img, lower=0.5, upper=1.5): e = random.uniform(lower, upper) return ImageEnhance.Brightness(img).enhance(e) def random_contrast(img, lower=0.5, upper=1.5): e = random.uniform(lower, upper) return ImageEnhance.Contrast(img).enhance(e) def random_color(img, lower=0.5, upper=1.5): e = random.uniform(lower, upper) return ImageEnhance.Color(img).enhance(e) ops = [random_brightness, random_contrast, random_color] random.shuffle(ops) img = ops[0](img) img = ops[1](img) img = ops[2](img) return img def process_image(sample, mode): img_path = sample[0] img = Image.open(img_path) if mode == 'train': img = resize_short(img, DATA_DIM + 32) else: img = resize_short(img, DATA_DIM) img = crop_image(img, target_size=DATA_DIM, center=(mode != 'train')) if mode == 'train': img = distort_color(img) if random.randint(0, 1) == 1: img = img.transpose(Image.FLIP_LEFT_RIGHT) if img.mode != 'RGB': img = img.convert('RGB') img = np.array(img).astype('float32').transpose((2, 0, 1)) img -= img_mean if mode == 'train' or mode == 'test': return img, sample[1] elif mode == 'infer': return img def _reader_creator(file_list, mode, shuffle=False): def reader(): with open(file_list) as flist: lines = [line.strip() for line in flist] if shuffle: random.shuffle(lines) for line in lines: if mode == 'train' or mode == 'test': img_path, label = line.split() img_path = os.path.join(DATA_DIR, img_path) yield img_path, int(label) elif mode == 'infer': img_path = os.path.join(DATA_DIR, line) yield [img_path] mapper = functools.partial(process_image, mode=mode) return paddle.reader.xmap_readers(mapper, reader, THREAD, BUF_SIZE) def train(): return _reader_creator(TRAIN_LIST, 'train', shuffle=True) def test(): return _reader_creator(TEST_LIST, 'test', shuffle=False) def infer(file_list): return _reader_creator(file_list, 'infer', shuffle=False)