{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## 1. 模型简介\n", "[PP-YOLO](https://arxiv.org/abs/2007.12099)是PaddleDetection优化和改进的YOLOv3的模型,其精度(COCO数据集mAP)和推理速度均优于[YOLOv4](https://arxiv.org/abs/2004.10934)模型。关于PP-YOLO的更多细节可以参考[官方文档](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.5/configs/ppyolo/README_cn.md)。" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2. 模型效果\n", "PP-YOLO在[COCO](http://cocodataset.org) test-dev2017数据集上精度达到45.9%,在单卡V100上FP32推理速度为72.9 FPS, V100上开启TensorRT下FP16推理速度为155.6 FPS。\n", "\n", "