# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import collections import itertools import os import random import time import h5py from functools import partial from concurrent.futures import ThreadPoolExecutor import numpy as np import distutils.util import paddle import paddle.distributed.fleet as fleet from paddle.io import DataLoader, Dataset from paddlenlp.transformers import BertForPretraining, BertModel, BertPretrainingCriterion from paddlenlp.transformers import BertTokenizer from data import create_data_holder, create_pretraining_dataset MODEL_CLASSES = {"bert": (BertForPretraining, BertTokenizer)} def parse_args(): parser = argparse.ArgumentParser() parser.add_argument( "--model_type", default=None, type=str, required=True, help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()), ) parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join( sum([ list(classes[-1].pretrained_init_configuration.keys()) for classes in MODEL_CLASSES.values() ], [])), ) parser.add_argument( "--input_dir", default=None, type=str, required=True, help="The input directory where the data will be read from.", ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument( "--max_predictions_per_seq", default=80, type=int, help="The maximum total of masked tokens in input sequence") parser.add_argument( "--batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.", ) parser.add_argument( "--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument( "--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") parser.add_argument( "--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument( "--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument( "--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.", ) parser.add_argument( "--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument( "--logging_steps", type=int, default=500, help="Log every X updates steps.") parser.add_argument( "--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.") parser.add_argument( "--seed", type=int, default=42, help="Random seed for initialization") parser.add_argument( "--use_amp", type=distutils.util.strtobool, default=False, help="Enable mixed precision training.") parser.add_argument( "--enable_addto", type=distutils.util.strtobool, default=False, help="Whether to enable the addto strategy for gradient accumulation or not. This is only used for AMP training." ) parser.add_argument( "--scale_loss", type=float, default=1.0, help="The value of scale_loss for fp16.") parser.add_argument( "--use_pure_fp16", type=distutils.util.strtobool, default=False, help="Whether to use pure fp16 training.") parser.add_argument( "--select_device", type=str, default="gpu", help="Device for selecting for the training.") parser.add_argument( "--gradient_merge_steps", type=int, default=1, help="Number of merge steps before gradient update." "global_batch_size = gradient_merge_steps * batch_size.") args = parser.parse_args() return args def select_dataset_file_for_each_worker(files, f_start_id, worker_num, worker_index): num_files = len(files) if worker_num > num_files: remainder = worker_num % num_files data_file = files[( f_start_id * worker_num + worker_index + remainder * f_start_id) % num_files] else: data_file = files[(f_start_id * worker_num + worker_index) % num_files] return data_file def reset_program_state_dict(model, state_dict): scale = model.initializer_range if hasattr(model, "initializer_range")\ else model.bert.config["initializer_range"] new_state_dict = dict() for n, p in state_dict.items(): if "layer_norm" not in p.name: dtype_str = "float32" if str(p.dtype) == "VarType.FP64": dtype_str = "float64" new_state_dict[p.name] = np.random.normal( loc=0.0, scale=scale, size=p.shape).astype(dtype_str) return new_state_dict def create_strategy(): """ Create build strategy and exec strategy. Args: Returns: build_strategy: build strategy exec_strategy: exec strategy """ build_strategy = paddle.static.BuildStrategy() exec_strategy = paddle.static.ExecutionStrategy() build_strategy.enable_addto = args.enable_addto exec_strategy.num_threads = 1 exec_strategy.num_iteration_per_drop_scope = 10000 return build_strategy, exec_strategy def build_compiled_program(main_program, loss): build_strategy, exec_strategy = create_strategy() main_program = paddle.static.CompiledProgram( main_program).with_data_parallel( loss_name=loss.name, exec_strategy=exec_strategy, build_strategy=build_strategy) return main_program def dist_optimizer(args, optimizer): """ Create a distributed optimizer based on a normal optimizer Args: args: optimizer: a normal optimizer Returns: optimizer: a distributed optimizer """ build_strategy, exec_strategy = create_strategy() dist_strategy = fleet.DistributedStrategy() dist_strategy.execution_strategy = exec_strategy dist_strategy.build_strategy = build_strategy dist_strategy.fuse_grad_size_in_MB = 16 if args.use_amp: dist_strategy.amp = True custom_black_list = ['lookup_table', 'lookup_table_v2'] if args.use_pure_fp16 else None dist_strategy.amp_configs = { 'custom_white_list': ['softmax', 'layer_norm', 'gelu'], 'init_loss_scaling': args.scale_loss, 'custom_black_list': custom_black_list, 'use_pure_fp16': args.use_pure_fp16 } if args.gradient_merge_steps > 1: dist_strategy.gradient_merge = True dist_strategy.gradient_merge_configs = { 'k_steps': args.gradient_merge_steps } optimizer = fleet.distributed_optimizer(optimizer, strategy=dist_strategy) return optimizer def set_seed(seed): random.seed(seed) np.random.seed(seed) paddle.seed(seed) class WorkerInitObj(object): def __init__(self, seed): self.seed = seed def __call__(self, id): np.random.seed(seed=self.seed + id) random.seed(self.seed + id) def do_train(args): # Initialize the paddle and paddle fleet execute enviroment paddle.enable_static() place = paddle.set_device(args.select_device) fleet.init(is_collective=True) worker_num = fleet.worker_num() worker_index = fleet.worker_index() # Create the random seed for the worker set_seed(args.seed) worker_init = WorkerInitObj(args.seed + worker_index) # Define the input data in the static mode main_program = paddle.static.default_main_program() startup_program = paddle.static.default_startup_program() data_holders = create_data_holder(args) [ input_ids, segment_ids, input_mask, masked_lm_positions, masked_lm_labels, next_sentence_labels, masked_lm_scale ] = data_holders # Define the model structure in static mode args.model_type = args.model_type.lower() model_class, tokenizer_class = MODEL_CLASSES[args.model_type] tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path) config = model_class.pretrained_init_configuration[args.model_name_or_path] if config["vocab_size"] % 8 != 0: config["vocab_size"] += 8 - (config["vocab_size"] % 8) model = BertForPretraining(BertModel(**config)) criterion = BertPretrainingCriterion(model.bert.config["vocab_size"]) prediction_scores, seq_relationship_score = model( input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask, masked_positions=masked_lm_positions) loss = criterion(prediction_scores, seq_relationship_score, masked_lm_labels, next_sentence_labels, masked_lm_scale) # Define the dynamic learing_reate scheduler and optimizer lr_scheduler = paddle.optimizer.lr.LambdaDecay( args.learning_rate, lambda current_step, num_warmup_steps=args.warmup_steps, num_training_steps=args.max_steps if args.max_steps > 0 else (len(train_data_loader) * args.num_train_epochs): float( current_step) / float(max(1, num_warmup_steps)) if current_step < num_warmup_steps else max( 0.0, float(num_training_steps - current_step) / float( max(1, num_training_steps - num_warmup_steps)))) optimizer = paddle.optimizer.AdamW( learning_rate=lr_scheduler, epsilon=args.adam_epsilon, parameters=model.parameters(), weight_decay=args.weight_decay, apply_decay_param_fun=lambda x: x in [ p.name for n, p in model.named_parameters() if not any(nd in n for nd in ["bias", "norm"]) ], multi_precision=args.use_pure_fp16) if worker_num == 1 and args.use_amp: custom_black_list=(['lookup_table', 'lookup_table_v2'] if args.use_pure_fp16 else None) amp_list = paddle.static.amp.AutoMixedPrecisionLists( custom_white_list=['softmax', 'layer_norm', 'gelu'], custom_black_list=custom_black_list) optimizer = paddle.static.amp.decorate( optimizer, amp_list, init_loss_scaling=args.scale_loss, use_dynamic_loss_scaling=True, use_pure_fp16=args.use_pure_fp16) if worker_num > 1: # Use the fleet api to compile the distributed optimizer optimizer = dist_optimizer(args, optimizer) optimizer.minimize(loss) # Define the Executor for running the static model exe = paddle.static.Executor(place) exe.run(startup_program) state_dict = model.state_dict() # Use the state dict to update the parameter reset_state_dict = reset_program_state_dict(model, state_dict) paddle.static.set_program_state(main_program, reset_state_dict) if args.use_amp: optimizer.amp_init(place) if worker_num == 1: # Construct the compiled program main_program = build_compiled_program(main_program, loss) pool = ThreadPoolExecutor(1) global_step = 0 tic_train = time.time() epoch = 0 while True: files = [ os.path.join(args.input_dir, f) for f in os.listdir(args.input_dir) if os.path.isfile(os.path.join(args.input_dir, f)) and "training" in f ] files.sort() num_files = len(files) random.Random(args.seed + epoch).shuffle(files) f_start_id = 0 # Select one file for each worker and create the DataLoader for the file data_file = select_dataset_file_for_each_worker( files, f_start_id, worker_num, worker_index) train_data_loader, _ = create_pretraining_dataset( data_file, args.max_predictions_per_seq, args, data_holders, worker_init, paddle.static.cuda_places()) for f_id in range(f_start_id + 1, len(files)): data_file = select_dataset_file_for_each_worker( files, f_id, worker_num, worker_index) dataset_future = pool.submit(create_pretraining_dataset, data_file, args.max_predictions_per_seq, args, data_holders, worker_init, paddle.static.cuda_places()) train_reader_cost = 0.0 train_run_cost = 0.0 total_samples = 0 reader_start = time.time() for step, batch in enumerate(train_data_loader): train_reader_cost += time.time() - reader_start global_step += 1 train_start = time.time() loss_return = exe.run(main_program, feed=batch, fetch_list=[loss]) train_run_cost += time.time() - train_start total_samples += args.batch_size # In the new 2.0 api, must call this function to change the learning_rate lr_scheduler.step() if global_step % args.logging_steps == 0: print( "tobal step: %d, epoch: %d, batch: %d, loss: %f, " "avg_reader_cost: %.5f sec, avg_batch_cost: %.5f sec, avg_samples: %.5f, ips: %.5f sequences/sec" % (global_step, epoch, step, loss_return[0], train_reader_cost / args.logging_steps, (train_reader_cost + train_run_cost) / args.logging_steps, total_samples / args.logging_steps, total_samples / (train_reader_cost + train_run_cost))) train_reader_cost = 0.0 train_run_cost = 0.0 total_samples = 0 if global_step % args.save_steps == 0: if worker_index == 0: output_dir = os.path.join(args.output_dir, "model_%d" % global_step) if not os.path.exists(output_dir): os.makedirs(output_dir) # TODO(fangzeyang): Udpate the save_params to paddle.static paddle.fluid.io.save_params(exe, output_dir) tokenizer.save_pretrained(output_dir) if global_step >= args.max_steps: reader_start = time.time() del train_data_loader return reader_start = time.time() del train_data_loader train_data_loader, data_file = dataset_future.result(timeout=None) epoch += 1 if __name__ == "__main__": args = parse_args() do_train(args)