English | [中文](README.md)
# Image Classification and Model Zoo
## Table of Contents
- [Introduction](#introduction)
- [Quick Start](#quick-start)
- [Installation](#installation)
- [Data preparation](#data-preparation)
- [Training](#training)
- [Finetuning](#finetuning)
- [Evaluation](#evaluation)
- [Inference](#inference)
- [Advanced Usage](#advanced-usage)
- [Mixup Training](#mixup-training)
- [Using Mixed-Precision Training](#using-mixed-precision-training)
- [Custom Dataset](#custom-dataset)
- [Supported Models and Performances](#supported-models-and-performances)
- [Reference](#reference)
- [Update](#update)
- [Contribute](#contribute)
---
## Introduction
Image classification, which is an important field of computer vision, is to classify images into pre-defined labels. Recently, many researchers have developed different kinds of neural networks and highly improved the classification performance. This page introduces how to do image classification with PaddlePaddle Fluid.
We also recommend users to take a look at the [IPython Notebook demo](https://aistudio.baidu.com/aistudio/projectDetail/122278)
## Quick Start
### Installation
Running samples in this directory requires Python 2.7 and later, CUDA 8.0 and later, CUDNN 7.0 and later, python package: numpy and opencv-python, PaddelPaddle Fluid v1.5 and later, the latest release version is recommended, If the PaddlePaddle on your device is lower than v1.5, please follow the instructions in [installation document](http://paddlepaddle.org/documentation/docs/zh/1.5/beginners_guide/install/index_cn.html) and make an update.
### Data preparation
An example for ImageNet classification is as follows. First of all, preparation of imagenet data can be done as:
```bash
cd data/ILSVRC2012/
sh download_imagenet2012.sh
```
In the shell script ```download_imagenet2012.sh```, there are three steps to prepare data:
**step-1:** Register at ```image-net.org``` first in order to get a pair of ```Username``` and ```AccessKey```, which are used to download ImageNet data.
**step-2:** Download ImageNet-2012 dataset from website. The training and validation data will be downloaded into folder "train" and "val" respectively. Please note that the size of data is more than 40 GB, it will take much time to download. Users who have downloaded the ImageNet data can organize it into ```data/ILSVRC2012``` directly.
**step-3:** Download training and validation label files. There are two label files which contain train and validation image labels respectively:
* train_list.txt: label file of imagenet-2012 training set, with each line seperated by ```SPACE```, like:
```
train/n02483708/n02483708_2436.jpeg 369
```
* val_list.txt: label file of imagenet-2012 validation set, with each line seperated by ```SPACE```, like.
```
val/ILSVRC2012_val_00000001.jpeg 65
```
Note: You may need to modify the data path in reader.py to load data correctly.
### Training
After data preparation, one can start the training step by:
```
python train.py \
--model=ResNet50 \
--batch_size=256 \
--total_images=1281167 \
--class_dim=1000 \
--image_shape=3,224,224 \
--model_save_dir=output/ \
--lr_strategy=piecewise_decay \
--lr=0.1
```
or running run.sh scripts
```bash
bash run.sh train model_name
```
**multiprocess training:**
If you have multiple gpus, this method is strongly recommended, because it can improve training speed dramatically.
You can start the multiprocess training step by:
```
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m paddle.distributed.launch train.py \
--model=ResNet50 \
--batch_size=256 \
--total_images=1281167 \
--class_dim=1000 \
--image_shape=3,224,224 \
--model_save_dir=output/ \
--lr_strategy=piecewise_decay \
--reader_thread=4 \
--lr=0.1
```
or reference scripts/train/ResNet50_dist.sh
**parameter introduction:**
Environment settings:
* **data_dir**: the data root directory Default: "./data/ILSVRC2012".
* **model_save_dir**: the directory to save trained model. Default: "output".
* **pretrained_model**: load model path for pretraining. Default: None.
* **checkpoint**: load the checkpoint path to resume. Default: None.
* **print_step**: the batch steps interval to print log. Default: 10.
* **save_step**: the epoch steps interval to save checkpoints. Default:1.
Solver and hyperparameters:
* **model**: name model to use. Default: "ResNet50".
* **total_images**: total number of images in the training set. Default: 1281167.
* **class_dim**: the class number of the classification task. Default: 1000.
* **image_shape**: input size of the network. Default: "3,224,224".
* **num_epochs**: the number of epochs. Default: 120.
* **batch_size**: the batch size of all devices. Default: 8.
* **test_batch_size**: the test batch size, Default: 16
* **lr_strategy**: learning rate changing strategy. Default: "piecewise_decay".
* **lr**: initialized learning rate. Default: 0.1.
* **l2_decay**: L2_decay parameter. Default: 1e-4.
* **momentum_rate**: momentum_rate. Default: 0.9.
* **step_epochs**: decay step of piecewise step, Default: [30,60,90].
* **decay_epochs**: decay epoch of exponential decay, Default: 2.4.
* **decay_rate**: decay rate of exponential decay, Default: 0.97.
Reader and preprocess:
* **lower_scale**: the lower scale in random crop data processing, upper is 1.0. Default:0.08.
* **lower_ratio**: the lower ratio in ramdom crop. Default:3./4. .
* **upper_ration**: the upper ratio in ramdom crop. Default:4./3. .
* **resize_short_size**: the resize_short_size. Default: 256.
* **crop_size**: the crop size, Default: 224.
* **use_mixup**: whether to use mixup data processing or not. Default:False.
* **mixup_alpha**: the mixup_alpha parameter. Default: 0.2.
* **use_aa**: whether to use auto augment data processing or not. Default:False.
* **reader_thread**: the number of threads in multi thread reader, Default: 8
* **reader_buf_size**: the buff size of multi thread reader, Default: 2048
* **interpolation**: interpolation method, Default: None
* **image_mean**: image mean, Default: [0.485, 0.456, 0.406]
* **image_std**: image std, Default: [0.229, 0.224, 0.225]
Switch:
* **use_gpu**: whether to use GPU or not. Default: True.
* **use_label_smoothing**: whether to use label_smoothing or not. Default:False.
* **label_smoothing_epsilon**: the label_smoothing_epsilon. Default:0.1.
* **random_seed**: random seed for debugging, Default: 1000.
* **padding_type**: padding type of convolution for efficientNet, Default: "SAME".
* **use_ema**: whether to use ExponentialMovingAverage or not. Default: False.
* **ema_decay**: the value of ExponentialMovingAverage decay rate. Default: 0.9999.
**data reader introduction:** Data reader is defined in ```reader.py```, default reader is implemented by opencv. In the [Training](#training) Stage, random crop and flipping are applied, while center crop is applied in the [Evaluation](#evaluation) and [Inference](#inference) stages. Supported data augmentation includes:
* rotation
* color jitter (haven't implemented in cv2_reader)
* random crop
* center crop
* resize
* flipping
* auto augment
### Finetuning
Finetuning is to finetune model weights in a specific task by loading pretrained weights. One can download [pretrained models](#supported-models-and-performances) and set its path to ```path_to_pretrain_model```, one can finetune a model by running following command:
```
python train.py \
--model=model_name \
--pretrained_model=${path_to_pretrain_model}
```
Note: Add and adjust other parameters accroding to specific models and tasks.
### Evaluation
Evaluation is to evaluate the performance of a trained model. One can download [pretrained models](#supported-models-and-performances) and set its path to ```path_to_pretrain_model```. Then top1/top5 accuracy can be obtained by running the following command:
```
python eval.py \
--model=model_name \
--pretrained_model=${path_to_pretrain_model}
```
Note: Add and adjust other parameters accroding to specific models and tasks.
### ExponentialMovingAverage Evaluation
Note: if you train model with flag use_ema, and you want to evaluate your ExponentialMovingAverage model, you should clean your saved model first.
```
python ema_clean.py \
--ema_model_dir=your_ema_model_dir \
--cleaned_model_dir=your_cleaned_model_dir
python eval.py \
--model=model_name \
--pretrained_model=your_cleaned_model_dir
```
### Inference
**some Inference stage unique parameters**
* **save_inference**: whether to save binary model, Default: False
* **topk**: the number of sorted predicated labels to show, Default: 1
* **label_path**: readable label filepath, Default: "/utils/tools/readable_label.txt"
Inference is used to get prediction score or image features based on trained models. One can download [pretrained models](#supported-models-and-performances) and set its path to ```path_to_pretrain_model```. Run following command then obtain prediction score.
```bash
python infer.py \
--model=model_name \
--pretrained_model=${path_to_pretrain_model}
```
Note: Add and adjust other parameters accroding to specific models and tasks.
## Advanced Usage
### Mixup Training
Set --use_mixup=True to start Mixup training, all of the models with a suffix "_vd" is training by mixup.
Refer to [mixup: Beyond Empirical Risk Minimization](https://arxiv.org/abs/1710.09412)
### Using Mixed-Precision Training
Mixed-precision part is moving to PaddlePaddle/Fleet now.
### Custom Dataset
## Supported Models and Performances
The image classification models currently supported by PaddlePaddle are listed in the table. It shows the top-1/top-5 accuracy on the ImageNet-2012 validation set of these models, the inference time of Paddle Fluid and Paddle TensorRT based on dynamic link library(test GPU model: Tesla P4).
Pretrained models can be downloaded by clicking related model names.
- Note
- 1: ResNet50_vd_v2 is the distilled version of ResNet50_vd.
- 2: In addition to EfficientNet, the image resolution feeded in InceptionV4 and Xception net is ```299x299```, Fix_ResNeXt101_32x48d_wsl is ```320x320```, DarkNet is ```256x256```, others are ```224x224```.In test time, the resize_short_size of the DarkNet53 and Fix_ResNeXt101_32x48d_wsl series networks is the same as the width or height of the input image resolution, the InceptionV4 and Xception network resize_short_size is 320, and the other networks resize_short_size are 256.
- 3: The resolutions of EfficientNetB0~B7 are ```224x224```,```240x240```,```260x260```,```300x300```,```380x380```,```456x456```,```528x528```,```600x600``` respectively, the resize_short_size in the inference phase is increased by 32 on the basis of the length or height of the resolution, for example, the resize_short_size of EfficientNetB1 is 272.In the process of training and inference phase of these series of models, the value of the resize parameter interpolation is set to 2 (cubic interpolation mode). Besides, the model uses ExponentialMovingAverage during the training process, this trick please refer to [ExponentialMovingAverage](https://www.paddlepaddle.org.cn/documentation/docs/en/1.5/api/optimizer.html#exponentialmovingaverage).
- 4: It's necessary to convert the train model to a binary model when appling dynamic link library to infer, One can do it by running following command:
```bash
python infer.py\
--model=model_name \
--pretrained_model=${path_to_pretrained_model} \
--save_inference=True
```
- 5: The pretrained model of the ResNeXt101_wsl series network is converted from the pytorch model. Please refer to [RESNEXT WSL](https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/) for details.
### AlexNet
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
|[AlexNet](http://paddle-imagenet-models-name.bj.bcebos.com/AlexNet_pretrained.tar) | 56.72% | 79.17% | 3.083 | 2.566 |
### SqueezeNet
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
|[SqueezeNet1_0](https://paddle-imagenet-models-name.bj.bcebos.com/SqueezeNet1_0_pretrained.tar) | 59.60% | 81.66% | 2.740 | 1.719 |
|[SqueezeNet1_1](https://paddle-imagenet-models-name.bj.bcebos.com/SqueezeNet1_1_pretrained.tar) | 60.08% | 81.85% | 2.751 | 1.282 |
### VGG Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
|[VGG11](https://paddle-imagenet-models-name.bj.bcebos.com/VGG11_pretrained.tar) | 69.28% | 89.09% | 8.223 | 6.619 |
|[VGG13](https://paddle-imagenet-models-name.bj.bcebos.com/VGG13_pretrained.tar) | 70.02% | 89.42% | 9.512 | 7.566 |
|[VGG16](https://paddle-imagenet-models-name.bj.bcebos.com/VGG16_pretrained.tar) | 72.00% | 90.69% | 11.315 | 8.985 |
|[VGG19](https://paddle-imagenet-models-name.bj.bcebos.com/VGG19_pretrained.tar) | 72.56% | 90.93% | 13.096 | 9.997 |
### MobileNet Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
|[MobileNetV1_x0_25](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_25_pretrained.tar) | 51.43% | 75.46% | 2.283 | 0.838 |
|[MobileNetV1_x0_5](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_5_pretrained.tar) | 63.52% | 84.73% | 2.378 | 1.052 |
|[MobileNetV1_x0_75](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_75_pretrained.tar) | 68.81% | 88.23% | 2.540 | 1.376 |
|[MobileNetV1](http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar) | 70.99% | 89.68% | 2.609 |1.615 |
|[MobileNetV2_x0_25](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_25_pretrained.tar) | 53.21% | 76.52% | 4.267 | 2.791 |
|[MobileNetV2_x0_5](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_5_pretrained.tar) | 65.03% | 85.72% | 4.514 | 3.008 |
|[MobileNetV2_x0_75](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_75_pretrained.tar) | 69.83% | 89.01% | 4.313 | 3.504 |
|[MobileNetV2](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar) | 72.15% | 90.65% | 4.546 | 3.874 |
|[MobileNetV2_x1_5](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x1_5_pretrained.tar) | 74.12% | 91.67% | 5.235 | 4.771 |
|[MobileNetV2_x2_0](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x2_0_pretrained.tar) | 75.23% | 92.58% | 6.680 | 5.649 |
|[MobileNetV3_small_x1_0](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_0_pretrained.tar) | 67.46% | 87.12% | 6.809 | |
### ShuffleNet Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
|[ShuffleNetV2](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_pretrained.tar) | 68.80% | 88.45% | 6.101 | 3.616 |
|[ShuffleNetV2_x0_25](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_25_pretrained.tar) | 49.90% | 73.79% | 5.956 | 2.505 |
|[ShuffleNetV2_x0_33](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_33_pretrained.tar) | 53.73% | 77.05% | 5.896 | 2.519 |
|[ShuffleNetV2_x0_5](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_5_pretrained.tar) | 60.32% | 82.26% | 6.048 | 2.642 |
|[ShuffleNetV2_x1_5](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x1_5_pretrained.tar) | 71.63% | 90.15% | 6.113 | 3.164 |
|[ShuffleNetV2_x2_0](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x2_0_pretrained.tar) | 73.15% | 91.20% | 6.430 | 3.954 |
|[ShuffleNetV2_swish](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_swish_pretrained.tar) | 70.03% | 89.17% | 6.078 | 4.976 |
### ResNet Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
|[ResNet18](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_pretrained.tar) | 70.98% | 89.92% | 3.456 | 2.261 |
|[ResNet18_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_vd_pretrained.tar) | 72.26% | 90.80% | 3.847 | 2.404 |
|[ResNet34](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar) | 74.57% | 92.14% | 5.668 | 3.424 |
|[ResNet34_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_vd_pretrained.tar) | 75.98% | 92.98% | 6.089 | 3.544 |
|[ResNet50](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar) | 76.50% | 93.00% | 8.787 | 5.137 |
|[ResNet50_vc](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vc_pretrained.tar) |78.35% | 94.03% | 9.013 | 5.285 |
|[ResNet50_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar) | 79.12% | 94.44% | 9.058 | 5.259 |
|[ResNet50_vd_v2](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_v2_pretrained.tar) | 79.84% | 94.93% | 9.058 | 5.259 |
|[ResNet101](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar) | 77.56% | 93.64% | 15.447 | 8.473 |
|[ResNet101_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar) | 80.17% | 94.97% | 15.685 | 8.574 |
|[ResNet152](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_pretrained.tar) | 78.26% | 93.96% | 21.816 | 11.646 |
|[ResNet152_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_vd_pretrained.tar) | 80.59% | 95.30% | 22.041 | 11.858 |
|[ResNet200_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet200_vd_pretrained.tar) | 80.93% | 95.33% | 28.015 | 14.896 |
### ResNeXt Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
|[ResNeXt50_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_32x4d_pretrained.tar) | 77.75% | 93.82% | 12.863 | 9.241 |
|[ResNeXt50_vd_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_vd_32x4d_pretrained.tar) | 79.56% | 94.62% | 13.673 | 9.162 |
|[ResNeXt50_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_64x4d_pretrained.tar) | 78.43% | 94.13% | 28.162 | 15.935 |
|[ResNeXt50_vd_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_vd_64x4d_pretrained.tar) | 80.12% | 94.86% | 20.888 | 15.938 |
|[ResNeXt101_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x4d_pretrained.tar) | 78.65% | 94.19% | 24.154 | 17.661 |
|[ResNeXt101_vd_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_32x4d_pretrained.tar) | 80.33% | 95.12% | 24.701 | 17.249 |
|[ResNeXt101_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_64x4d_pretrained.tar) | 78.43% | 94.13% | 41.073 | 31.288 |
|[ResNeXt101_vd_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_64x4d_pretrained.tar) | 80.78% | 95.20% | 42.277 | 32.620 |
|[ResNeXt152_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_32x4d_pretrained.tar) | 78.98% | 94.33% | 37.007 | 26.981 |
|[ResNeXt152_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_64x4d_pretrained.tar) | 79.51% | 94.71% | 58.966 | 47.915 |
|[ResNeXt152_vd_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_vd_64x4d_pretrained.tar) | 81.08% | 95.34% | 60.947 | 47.406 |
### DenseNet Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
|[DenseNet121](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet121_pretrained.tar) | 75.66% | 92.58% | 12.437 | 5.592 |
|[DenseNet161](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet161_pretrained.tar) | 78.57% | 94.14% | 27.717 | 12.254 |
|[DenseNet169](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet169_pretrained.tar) | 76.81% | 93.31% | 18.941 | 7.742 |
|[DenseNet201](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet201_pretrained.tar) | 77.63% | 93.66% | 26.583 | 10.066 |
|[DenseNet264](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet264_pretrained.tar) | 77.96% | 93.85% | 41.495 | 14.740 |
### DPN Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
|[DPN68](https://paddle-imagenet-models-name.bj.bcebos.com/DPN68_pretrained.tar) | 76.78% | 93.43% | 18.446 | 6.199 |
|[DPN92](https://paddle-imagenet-models-name.bj.bcebos.com/DPN92_pretrained.tar) | 79.85% | 94.80% | 25.748 | 21.029 |
|[DPN98](https://paddle-imagenet-models-name.bj.bcebos.com/DPN98_pretrained.tar) | 80.59% | 95.10% | 29.421 | 13.411 |
|[DPN107](https://paddle-imagenet-models-name.bj.bcebos.com/DPN107_pretrained.tar) | 80.89% | 95.32% | 41.071 | 18.885 |
|[DPN131](https://paddle-imagenet-models-name.bj.bcebos.com/DPN131_pretrained.tar) | 80.70% | 95.14% | 41.179 | 18.246 |
### SENet Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
|[SE_ResNet50_vd](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNet50_vd_pretrained.tar) | 79.52% | 94.75% | 10.345 | 7.631 |
|[SE_ResNeXt50_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt50_32x4d_pretrained.tar) | 78.44% | 93.96% | 14.916 | 12.305 |
|[SE_ResNeXt101_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt101_32x4d_pretrained.tar) | 79.12% | 94.20% | 30.085 | 23.218 |
|[SENet154_vd](https://paddle-imagenet-models-name.bj.bcebos.com/SENet154_vd_pretrained.tar) | 81.40% | 95.48% | 71.892 | 53.131 |
### Inception Series
| Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
|[GoogLeNet](https://paddle-imagenet-models-name.bj.bcebos.com/GoogLeNet_pretrained.tar) | 70.70% | 89.66% | 6.528 | 2.919 |
|[Xception41](https://paddle-imagenet-models-name.bj.bcebos.com/Xception41_pretrained.tar) | 79.30% | 94.53% | 13.757 | 7.885 |
|[Xception41_deeplab](https://paddle-imagenet-models-name.bj.bcebos.com/Xception41_deeplab_pretrained.tar) | 79.55% | 94.38% | 14.268 | 7.257 |
|[Xception65](https://paddle-imagenet-models-name.bj.bcebos.com/Xception65_pretrained.tar) | 81.00% | 95.49% | 19.216 | 10.742 |
|[Xception65_deeplab](https://paddle-imagenet-models-name.bj.bcebos.com/Xception65_deeplab_pretrained.tar) | 80.32% | 94.49% | 19.536 | 10.713 |
|[Xception71](https://paddle-imagenet-models-name.bj.bcebos.com/Xception71_pretrained.tar) | 81.11% | 95.45% | 23.291 | 12.154 |
|[InceptionV4](https://paddle-imagenet-models-name.bj.bcebos.com/InceptionV4_pretrained.tar) | 80.77% | 95.26% | 32.413 | 17.728 |
### DarkNet
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
|[DarkNet53](https://paddle-imagenet-models-name.bj.bcebos.com/DarkNet53_ImageNet1k_pretrained.tar) | 78.04% | 94.05% | 11.969 | 6.300 |
### ResNeXt101_wsl Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
|[ResNeXt101_32x8d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x8d_wsl_pretrained.tar) | 82.55% | 96.74% | 33.310 | 27.628 |
|[ResNeXt101_32x16d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x16d_wsl_pretrained.tar) | 84.24% | 97.26% | 54.320 | 47.599 |
|[ResNeXt101_32x32d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x32d_wsl_pretrained.tar) | 84.97% | 97.59% | 97.734 | 81.660 |
|[ResNeXt101_32x48d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x48d_wsl_pretrained.tar) | 85.37% | 97.69% | 161.722 | |
|[Fix_ResNeXt101_32x48d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/Fix_ResNeXt101_32x48d_wsl_pretrained.tar) | 86.26% | 97.97% | 236.091 | |
### EfficientNet Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
|[EfficientNetB0](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB0_pretrained.tar) | 77.38% | 93.31% | 10.303 | 4.334 |
|[EfficientNetB1](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB1_pretrained.tar)[1](#trans) | 79.15% | 94.41% | 15.626 | 6.502 |
|[EfficientNetB2](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB2_pretrained.tar)[1](#trans) | 79.85% | 94.74% | 17.847 | 7.558 |
|[EfficientNetB3](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB3_pretrained.tar)[1](#trans) | 81.15% | 95.41% | 25.993 | 10.937 |
|[EfficientNetB4](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB4_pretrained.tar)[1](#trans) | 82.85% | 96.23% | 47.734 | 18.536 |
|[EfficientNetB5](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB5_pretrained.tar)[1](#trans) | 83.62% | 96.72% | 88.578 | 32.102 |
|[EfficientNetB6](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB6_pretrained.tar)[1](#trans) | 84.00% | 96.88% | 138.670 | 51.059 |
|[EfficientNetB7](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB7_pretrained.tar)[1](#trans) | 84.30% | 96.89% | 234.364 | 82.107 |
[1] means the pretrained weight is converted form [original repository](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet).
## FAQ
**Q:** How to solve this problem when I try to train a 6-classes dataset with indicating pretrained_model parameter ?
```
Enforce failed. Expected x_dims[1] == labels_dims[1], but received x_dims[1]:1000 != labels_dims[1]:6.
```
**A:** It may be caused by dismatch dimensions. Please remove fc parameter in pretrained models, It usually named with a prefix ```fc_```
## Reference
- AlexNet: [imagenet-classification-with-deep-convolutional-neural-networks](https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf), Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton
- ResNet: [Deep Residual Learning for Image Recognitio](https://arxiv.org/abs/1512.03385), Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
- ResNeXt: [Aggregated Residual Transformations for Deep Neural Networks](https://arxiv.org/abs/1611.05431), Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, Kaiming He
- SeResNeXt: [Squeeze-and-Excitation Networks](https://arxiv.org/pdf/1709.01507.pdf)Jie Hu, Li Shen, Samuel Albanie
- ShuffleNetV1: [ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices](https://arxiv.org/abs/1707.01083), Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, Jian Sun
- ShuffleNetV2: [ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design](https://arxiv.org/abs/1807.11164), Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, Jian Sun
- MobileNetV1: [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861), Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam
- MobileNetV2: [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/pdf/1801.04381v4.pdf), Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen
- MobileNetV3: [Searching for MobileNetV3](https://arxiv.org/pdf/1905.02244.pdf), Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, Hartwig Adam
- VGG: [Very Deep Convolutional Networks for Large-scale Image Recognition](https://arxiv.org/pdf/1409.1556), Karen Simonyan, Andrew Zisserman
- GoogLeNet: [Going Deeper with Convolutions](https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf), Christian Szegedy1, Wei Liu2, Yangqing Jia
- Xception: [Xception: Deep Learning with Depthwise Separable Convolutions](https://arxiv.org/abs/1610.02357), Franc ̧ois Chollet
- InceptionV4: [Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning](https://arxiv.org/abs/1602.07261), Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi
- DarkNet: [YOLOv3: An Incremental Improvement](https://pjreddie.com/media/files/papers/YOLOv3.pdf), Joseph Redmon, Ali Farhadi
- DenseNet: [Densely Connected Convolutional Networks](https://arxiv.org/abs/1608.06993), Gao Huang, Zhuang Liu, Laurens van der Maaten
- DPN: [Dual Path Networks](https://arxiv.org/pdf/1707.01629.pdf), Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin, Shuicheng Yan, Jiashi Feng
- SqueezeNet: [SQUEEZENET: ALEXNET-LEVEL ACCURACY WITH 50X FEWER PARAMETERS AND <0.5MB MODEL SIZE](https://arxiv.org/abs/1602.07360), Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, Kurt Keutzer
- ResNeXt101_wsl: [Exploring the Limits of Weakly Supervised Pretraining](https://arxiv.org/abs/1805.00932), Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He, Manohar Paluri, Yixuan Li, Ashwin Bharambe, Laurens van der Maaten
- Fix_ResNeXt101_wsl: [Fixing the train-test resolution discrepancy](https://arxiv.org/abs/1906.06423), Hugo Touvron, Andrea Vedaldi, Matthijs Douze, Herve ́ Je ́gou
- EfficientNet: [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946), Mingxing Tan, Quoc V. Le
## Update
- 2018/12/03 **Stage1**: Update AlexNet, ResNet50, ResNet101, MobileNetV1
- 2018/12/23 **Stage2**: Update VGG Series, SeResNeXt50_32x4d, SeResNeXt101_32x4d, ResNet152
- 2019/01/31 Update MobileNetV2_x1_0
- 2019/04/01 **Stage3**: Update ResNet18, ResNet34, GoogLeNet, ShuffleNetV2
- 2019/06/12 **Stage4**:Update ResNet50_vc, ResNet50_vd, ResNet101_vd, ResNet152_vd, ResNet200_vd, SE154_vd InceptionV4, ResNeXt101_64x4d, ResNeXt101_vd_64x4d
- 2019/06/22 Update ResNet50_vd_v2
- 2019/07/02 **Stage5**: Update MobileNetV2_x0_5, ResNeXt50_32x4d, ResNeXt50_64x4d, Xception41, ResNet101_vd
- 2019/07/19 **Stage6**: Update ShuffleNetV2_x0_25, ShuffleNetV2_x0_33, ShuffleNetV2_x0_5, ShuffleNetV2_x1_0, ShuffleNetV2_x1_5, ShuffleNetV2_x2_0, MobileNetV2_x0_25, MobileNetV2_x1_5, MobileNetV2_x2_0, ResNeXt50_vd_64x4d, ResNeXt101_32x4d, ResNeXt152_32x4d
- 2019/08/01 **Stage7**: Update DarkNet53, DenseNet121. Densenet161, DenseNet169, DenseNet201, DenseNet264, SqueezeNet1_0, SqueezeNet1_1, ResNeXt50_vd_32x4d, ResNeXt152_64x4d, ResNeXt101_32x8d_wsl, ResNeXt101_32x16d_wsl, ResNeXt101_32x32d_wsl, ResNeXt101_32x48d_wsl, Fix_ResNeXt101_32x48d_wsl
- 2019/09/11 **Stage8**: Update ResNet18_vd,ResNet34_vd,MobileNetV1_x0_25,MobileNetV1_x0_5,MobileNetV1_x0_75,MobileNetV2_x0_75,MobilenNetV3_small_x1_0,DPN68,DPN92,DPN98,DPN107,DPN131,ResNeXt101_vd_32x4d,ResNeXt152_vd_64x4d,Xception65,Xception71,Xception41_deeplab,Xception65_deeplab,SE_ResNet50_vd
- 2019/09/20 Update EfficientNet
## Contribute
If you can fix an issue or add a new feature, please open a PR to us. If your PR is accepted, you can get scores according to the quality and difficulty of your PR(0~5), while you got 10 scores, you can contact us for interview or recommendation letter.