import os import sys import gzip import paddle.v2 as paddle import config as conf import reader from network_conf import rnn_lm from utils import logger, build_dict, load_dict def train(topology, train_reader, test_reader, model_save_dir="models", num_passes=10): """ train model. :param topology: cost layer of the model to train. :type topology: LayerOuput :param train_reader: train data reader. :type trainer_reader: collections.Iterable :param test_reader: test data reader. :type test_reader: collections.Iterable :param model_save_dir: path to save the trained model :type model_save_dir: str :param num_passes: number of epoch :type num_passes: int """ if not os.path.exists(model_save_dir): os.mkdir(model_save_dir) # initialize PaddlePaddle paddle.init(use_gpu=conf.use_gpu, trainer_count=conf.trainer_count) # create optimizer adam_optimizer = paddle.optimizer.Adam( learning_rate=1e-3, regularization=paddle.optimizer.L2Regularization(rate=1e-3), model_average=paddle.optimizer.ModelAverage( average_window=0.5, max_average_window=10000)) # create parameters parameters = paddle.parameters.create(topology) # create trainer trainer = paddle.trainer.SGD( cost=topology, parameters=parameters, update_equation=adam_optimizer) # define the event_handler callback def event_handler(event): if isinstance(event, paddle.event.EndIteration): if not event.batch_id % conf.log_period: logger.info("Pass %d, Batch %d, Cost %f, %s" % ( event.pass_id, event.batch_id, event.cost, event.metrics)) if (not event.batch_id % conf.save_period_by_batches) and event.batch_id: save_name = os.path.join(model_save_dir, "rnn_lm_pass_%05d_batch_%03d.tar.gz" % (event.pass_id, event.batch_id)) with gzip.open(save_name, "w") as f: trainer.save_parameter_to_tar(f) if isinstance(event, paddle.event.EndPass): if test_reader is not None: result = trainer.test(reader=test_reader) logger.info("Test with Pass %d, %s" % (event.pass_id, result.metrics)) save_name = os.path.join(model_save_dir, "rnn_lm_pass_%05d.tar.gz" % (event.pass_id)) with gzip.open(save_name, "w") as f: trainer.save_parameter_to_tar(f) logger.info("start training...") trainer.train( reader=train_reader, event_handler=event_handler, num_passes=num_passes) logger.info("Training is finished.") def main(): # prepare vocab if not (os.path.exists(conf.vocab_file) and os.path.getsize(conf.vocab_file)): logger.info(("word dictionary does not exist, " "build it from the training data")) build_dict(conf.train_file, conf.vocab_file, conf.max_word_num, conf.cutoff_word_fre) logger.info("load word dictionary.") word_dict = load_dict(conf.vocab_file) logger.info("dictionay size = %d" % (len(word_dict))) cost = rnn_lm( len(word_dict), conf.emb_dim, conf.hidden_size, conf.stacked_rnn_num, conf.rnn_type) # define reader reader_args = { "file_name": conf.train_file, "word_dict": word_dict, } train_reader = paddle.batch( paddle.reader.shuffle( reader.rnn_reader(**reader_args), buf_size=102400), batch_size=conf.batch_size) test_reader = None if os.path.exists(conf.test_file) and os.path.getsize(conf.test_file): test_reader = paddle.batch( paddle.reader.shuffle( reader.rnn_reader(**reader_args), buf_size=65536), batch_size=config.batch_size) train( topology=cost, train_reader=train_reader, test_reader=test_reader, model_save_dir=conf.model_save_dir, num_passes=conf.num_passes) if __name__ == "__main__": main()