import numpy as np import paddle.fluid as fluid import paddle.fluid.layers as layers class LearningRateScheduler(object): """ Wrapper for learning rate scheduling as described in the Transformer paper. LearningRateScheduler adapts the learning rate externally and the adapted learning rate will be feeded into the main_program as input data. """ def __init__(self, d_model, warmup_steps, place, learning_rate=0.001, current_steps=0, name="learning_rate"): self.current_steps = current_steps self.warmup_steps = warmup_steps self.d_model = d_model self.learning_rate = layers.create_global_var( name=name, shape=[1], value=float(learning_rate), dtype="float32", persistable=True) self.place = place def update_learning_rate(self, data_input): self.current_steps += 1 lr_value = np.power(self.d_model, -0.5) * np.min([ np.power(self.current_steps, -0.5), np.power(self.warmup_steps, -1.5) * self.current_steps ]) lr_tensor = fluid.LoDTensor() lr_tensor.set(np.array([lr_value], dtype="float32"), self.place) data_input[self.learning_rate.name] = lr_tensor layers.Print(self.learning_rate)