#! /usr/bin/env bash pushd ../.. > /dev/null # grid-search for hyper-parameters in language model CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \ python -u tools/tune.py \ --num_samples=100 \ --trainer_count=8 \ --beam_size=500 \ --num_proc_bsearch=12 \ --num_conv_layers=2 \ --num_rnn_layers=3 \ --rnn_layer_size=2048 \ --num_alphas=14 \ --num_betas=20 \ --alpha_from=0.1 \ --alpha_to=0.36 \ --beta_from=0.05 \ --beta_to=1.0 \ --cutoff_prob=0.99 \ --use_gru=False \ --use_gpu=True \ --share_rnn_weights=True \ --tune_manifest='data/librispeech/manifest.dev-clean' \ --mean_std_path='data/librispeech/mean_std.npz' \ --vocab_path='data/librispeech/vocab.txt' \ --model_path='checkpoints/libri/params.latest.tar.gz' \ --lang_model_path='models/lm/common_crawl_00.prune01111.trie.klm' \ --error_rate_type='wer' \ --specgram_type='linear' if [ $? -ne 0 ]; then echo "Failed in tuning!" exit 1 fi exit 0