# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import time import numpy as np import paddle import paddle.fluid as fluid import box_utils import reader from utility import print_arguments, parse_args, check_gpu from models.yolov3 import YOLOv3 from paddle.fluid.dygraph.base import to_variable from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval, Params from config import cfg def infer(): # check if set use_gpu=True in paddlepaddle cpu version check_gpu(cfg.use_gpu) if not os.path.exists('output'): os.mkdir('output') place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace() with fluid.dygraph.guard(place): model = YOLOv3(3, is_train=False) input_size = cfg.input_size # yapf: disable if cfg.weights: restore, _ = fluid.load_dygraph(cfg.weights) model.set_dict(restore) # yapf: enable # you can save inference model by following code # fluid.io.save_inference_model("./output/yolov3", # feeded_var_names=['image', 'im_shape'], # target_vars=outputs, # executor=exe) image_names = [] if cfg.image_name is not None: image_names.append(cfg.image_name) else: for image_name in os.listdir(cfg.image_path): if image_name.split('.')[-1] in ['jpg', 'png']: image_names.append(image_name) for image_name in image_names: infer_reader = reader.infer(input_size, os.path.join(cfg.image_path, image_name)) label_names, _ = reader.get_label_infos() data = next(infer_reader()) img_data = np.array([x[0] for x in data]).astype('float32') img = to_variable(img_data) im_shape_data = np.array([x[2] for x in data]).astype('int32') im_shape = to_variable(im_shape_data) outputs = model(img, None, None, None, None, im_shape) bboxes = outputs.numpy() if bboxes.shape[1] != 6: print("No object found in {}".format(image_name)) continue labels = bboxes[:, 0].astype('int32') scores = bboxes[:, 1].astype('float32') boxes = bboxes[:, 2:].astype('float32') path = os.path.join(cfg.image_path, image_name) box_utils.draw_boxes_on_image(path, boxes, scores, labels, label_names, cfg.draw_thresh) if __name__ == '__main__': args = parse_args() print_arguments(args) infer()