# YOLOv3 目标检测 --- 本模型是[paddle_yolov3](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/yolov3)的动态图版本 ## 内容 - [简介](#简介) - [快速开始](#快速开始) - [进阶使用](#进阶使用) - [FAQ](#faq) - [参考文献](#参考文献) - [版本更新](#版本更新) - [如何贡献代码](#如何贡献代码) - [作者](#作者) ## 简介 [YOLOv3](https://arxiv.org/abs/1804.02767) 是由 [Joseph Redmon](https://arxiv.org/search/cs?searchtype=author&query=Redmon%2C+J) 和 [Ali Farhadi](https://arxiv.org/search/cs?searchtype=author&query=Farhadi%2C+A) 提出的单阶段检测器, 该检测器与达到同样精度的传统目标检测方法相比,推断速度能达到接近两倍. 在我们的实现版本中使用了 [Bag of Freebies for Training Object Detection Neural Networks](https://arxiv.org/abs/1902.04103v3) 中提出的图像增强和label smooth等优化方法,精度优于darknet框架的实现版本,在COCO-2017数据集上,达到`mAP(0.50:0.95)= 38.9`的精度,比darknet实现版本的精度(33.0)要高5.9. 同时,在推断速度方面,基于Paddle预测库的加速方法,推断速度比darknet高30%. ## 快速开始 ### 安装 **安装[COCO-API](https://github.com/cocodataset/cocoapi):** 训练前需要首先下载[COCO-API](https://github.com/cocodataset/cocoapi): git clone https://github.com/cocodataset/cocoapi.git cd cocoapi/PythonAPI # if cython is not installed pip install Cython # Install into global site-packages make install # Alternatively, if you do not have permissions or prefer # not to install the COCO API into global site-packages python setup.py install --user **安装[PaddlePaddle](https://github.com/PaddlePaddle/Paddle):** 在当前目录下运行样例代码需要PadddlePaddle Fluid的v.1.7或以上的版本。如果你的运行环境中的PaddlePaddle低于此版本,请根据[安装文档](https://www.paddlepaddle.org.cn/documentation/docs/zh/beginners_guide/install/index_cn.html)中的说明来更新PaddlePaddle。 ### 数据准备 **COCO数据集:** 在[MS-COCO数据集](http://cocodataset.org/#download)上进行训练,通过如下方式下载数据集。 ```bash python dataset/coco/download.py ``` 数据目录结构如下: ``` dataset/coco/ ├── annotations │ ├── instances_train2014.json │ ├── instances_train2017.json │ ├── instances_val2014.json │ ├── instances_val2017.json | ... ├── train2017 │ ├── 000000000009.jpg │ ├── 000000580008.jpg | ... ├── val2017 │ ├── 000000000139.jpg │ ├── 000000000285.jpg | ... ``` **自定义数据集:** 用户可使用自定义的数据集,我们推荐自定义数据集使用COCO数据集格式的标注,并可通过设置`--data_dir`或修改[reader.py](./reader.py#L39)指定数据集路径。使用COCO数据集格式标注时,目录结构可参考上述COCO数据集目录结构。 ### 模型训练 **下载预训练模型:** 本示例提供DarkNet-53预训练[模型](https://paddlemodels.bj.bcebos.com/yolo/darknet53.pdparams ),该模型转换自作者提供的预训练权重[pjreddie/darknet](https://pjreddie.com/media/files/darknet53.conv.74),采用如下命令下载预训练模型: sh ./weights/download.sh **注意:** Windows用户可通过`./weights/download.sh`中的链接直接下载和解压。 通过设置`--pretrain` 加载预训练模型。同时在fine-tune时也采用该设置加载已训练模型。 请在训练前确认预训练模型下载与加载正确,否则训练过程中损失可能会出现NAN。 **开始训练:** 数据准备完毕后,可以通过如下的方式启动训练: python train.py \ --model_save_dir=output/ \ --pretrain=${path_to_pretrain_model} \ --data_dir=${path_to_data} \ --class_num=${category_num} **多卡训练:** 动态图支持多进程多卡进行模型训练,启动方式: 首先通过设置`export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7`指定8卡GPU训练。 `python -m paddle.distributed.launch --selected_gpus=0,1,2,3 --started_port=9999 train.py --batch_size=16 --use_data_parallel=1` 您也可以直接运行快速开始脚本`start_parall.sh`进行训练,默认使用4卡进行训练,每张卡的batch size为16 执行训练开始时,会得到类似如下输出,每次迭代打印的log数与指定卡数一致: ``` Iter 2, loss 9056.620443, time 3.21156 Iter 3, loss 7720.641968, time 1.63363 Iter 4, loss 6736.150391, time 2.70573 ``` **注意:** YOLOv3模型总batch size为64,这里使用4 GPUs每GPU上batch size为16来训练 **模型设置:** * 模型使用了基于COCO数据集生成的9个先验框:10x13,16x30,33x23,30x61,62x45,59x119,116x90,156x198,373x326 * YOLOv3模型中,若预测框不是该点最佳匹配框但是和任一ground truth框的重叠大于`ignore_thresh=0.7`,则忽略该预测框的目标性损失 **训练策略:** * 采用momentum优化算法训练YOLOv3,momentum=0.9。 * 学习率采用warmup算法,前4000个Iter学习率从0.0线性增加至0.001。在400000,450000个Iter时使用0.1,0.01乘子进行学习率衰减,最大训练500000个Iter。 下图为模型训练结果:
Train Loss
YOLOv3检测原理
YOLOv3网络结构